Satélites

e

Sensores

Projetado e construído pela Israel Aircraft Industries (IAI), empresa estatal do Governo de Israel;

A operação e comercialização das imagens são atribuições da ImageSat International.

Missão	Earth Remote Observation Satellite - EROS			
Instituições Responsáveis	ImageSat International N.V Israel Aircraft Industries (IAI)			
País/Região	Israel			
Satélite	EROS A	EROS B		
Lançamento	05/12/2000	25/04/2006		
Local de Lançamento	Sbobodni, Sibéria	Sbobodni, Sibéria		
Veículo Lançador	Russian Start-1	Russian Start-1		
Situação Atual	ativo	ativo		
Tempo de vida projetado	10 anos	10 anos		
Instrumentos Sensores	CÂMERA CCD/ CÂMERA CCD/T			

Especificação	EROS-A	EROS-B	
Período Orbital (duração			
de uma Órbita)	94 a 96 minutos	94 a 96 minutos	
Números de Órbita			
completados durante 24			
horas	aproximadamente 15 órbitas	aproximadamente 15 órbitas	
Quantidade de passagens			
diurnas na Estação	2 passagens habitualmente	2 passagens habitualmente	
	Circular e Sincronizada com a	Circular e Sincronizada com a	
Tipo de Órbita	Iluminação solar	Iluminação solar	
Altitude da Órbita	510 km +/- 40 km	510 km +/- 40 km	
Hora local na passagem			
descendente	9:45 AM	13:45 AM	
Inclinação da Órbita	97.2 Graus	97.2 Graus	
Capacidade de Revisita (
orbita a 510 Km e Lat de	com visada de 15 Graus, revisita	com visada de 15 Graus, revisita	
30 Graus)	em média a cada 9.5 dias	em média a cada 9.5 dias	
Capacidade de Revisita (
orbita a 510 Km e Lat de	com visada de 30 Graus, revisita	· ·	
30 Graus)	em média a cada 3.7 dias	em média a cada 3.7 dias	
Capacidade de Revisita (
orbita a 510 Km e Lat de	com visada de 45 Graus, revisita	com visada de 45 Graus, revisita	
30 Graus)	em média a cada 2.1 dias	em média a cada 2.1 dias	
Área recoberta para cada			
cena	14 X 14 Km	7 X 7 Km	

Sensores:

CCD (Charge Coupled Device) Satélite EROS A: É capaz de adquirir imagens do nadir e em visadas laterais de até 45º em relação ao seu eixo principal (pares esteroscópicos).

CCD/TDI (Charge Coupled Device/Time Delay Integration)
Satélite EROS B

A câmera CCD/TDI possui algumas inovações tecnológicas em relação à CCD (a bordo do satélite EROS A). A principal delas é a resolução espacial oferecida no nadir, de 70 cm.

Valores para aquisição Imagens com mais de 6 meses:

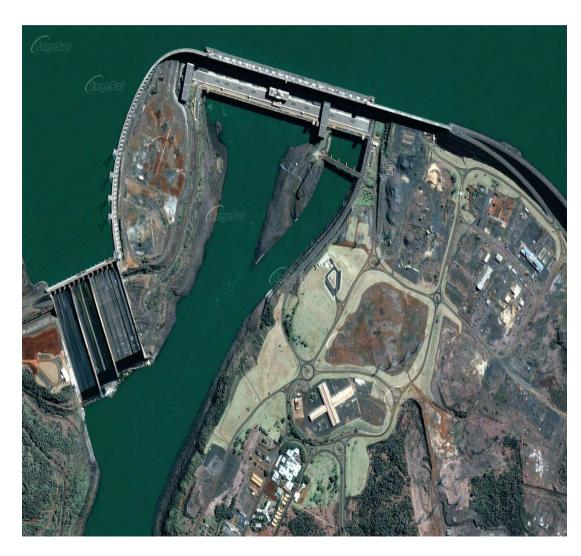
Satélite	Área mínima	Imagens de Catalogo (com mais de 6 meses de idade)
Eros-A	14 x 14 km ou 196 Km2	400,00 USD / 2.000,00 Reais por cena
Eros-B	7 x 7 km ou 49 Km2	600,00 USD / 3.000,00 Reais por cena

Valores para aquisição Imagens novas ou programadas:

Imagens Normais	Área mínima (uma cena básica)	Valor por Km2 para Imagens de menos de 6 meses ou programadas
EROS-A	14 x 14 ou 196 Km2	5,00 USD ou 25,00 Reais por Km2
EROS-B	7 x 7 k ou 49 Km2	18,00 USD ou 90,00 Reais por Km2

Imagens em Estereoscopia	Área mínima (uma cena básica)	Valor por Km2 para Imagens de menos de 6 meses ou programadas
EROS-A	14 x 14 ou 196 Km2	11,00 USD ou 55,00 Reais por Km2
EROS-B	7 x 7 k ou 49 Km2	38,00 USD ou 190,00 Reais por Km2

Exemplo (Rio de Janeiro):


IKONOS

IKONOS

Sensor	Bandas Espectrais	Resolução Espectral	Resolução Espacial	Resolução Temporal	Resolução Radiométrica	Área Mapeada
(PAN) PANCROMÁTICO	PAN	450 - 900nm	1 metro	2.9 dias		
					11 bits	11 x 11 km
	Azul	450 - 520nm				
MS) Multiespectral	Verde	520 - 600nm	4 metros	1.5 dias		
	Vermelho	630 - 690nm				
	Infravermelho Próximo	760 - 900nm				

IKONOS

Exemplo (Itaipu):

Lançado em 24/01/2006 por um foguete H-IIA a partir do centro espacial de Tanegashima pela Agência de Exploração Aeroespacial Japonesa Satélite Japonesa (JAXA);

Com objetivo de contribuir com os campos da cartografia (mapeamento, incluindo modelo digital de elevação), observação do uso do solo, monitoramento de desastres ambientais e levantamento de recursos naturais;

Fica cerca de 700 quilômetros de altitude, período de revisita de 46 dias e tempo de duração da orbita de 1h 37min forma Heliossíncrona;

Sensores

PRISM:

Resolução espacial de 2.5m de resolução espacial ao nadir; Comprimento de onda 0,55 a 0,77 micrometros; (PAN).

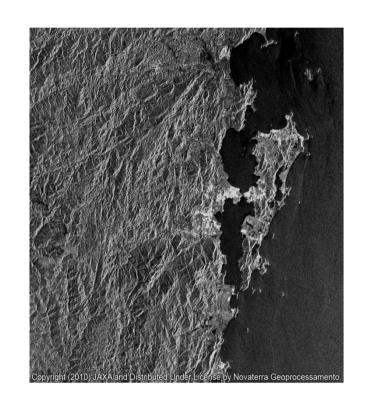
Possui três sistemas óticos independentes ou triplet:

Visadas nadir (70 km). Dianteira (forward) e Traseira (backward) (35 km), ideal na esteroscopia em sua orbita;

Não consegue imagear áreas além das latitudes 82 º sul e norte

Sensores

AVNIR-2:



Sensor de 4 bandas espectrais, que trabalha na faixa do visível e do infravermelho próximo, resolução espacial de 10m;

Fornece excelentes imagens para monitoramento ambiental e mapeamento de uso e cobertura do solo;

PALSAR:

Sensor microondas ativo que opera na freqüência da banda L (1270MHz), Com resolução de 10 a 100 m, capaz de realizar observações noturnas e diurnas;

Opera no modo Fine (resolução espacial de 10 m) e no modo Scansar (para observar áreas muito maiores), capaz de imagear largas faixas de 205 a 350km;

Maior penetração no dossel vegetal;

Aplicações:

Gerar modelos digitais de superfície (PRISM) e PALSAR;

Monitoramento ambiental e mapeamento de uso e cobertura do solo (AVNIR-2);

Monitorar extensões de gelo em áreas marítimas e áreas de florestas tropicais (PALSAR);

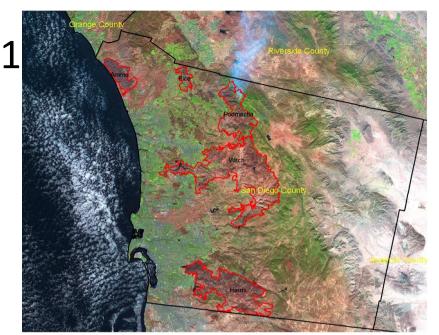
O IRS – P6 (Resourcesat-I) faz parte de uma missão global de observação da terra do Indian Space Research Organization (ISRO).

Foi lançado em 2003 e conta com três sensores, chamados LISS 3, AWiFS e LISS 4.

As imagens dos sensores LISS 3 e AWiFS foram disponibilizadas gratuitamente pelo Instituto Nacional de Pesquisas Espaciais (Inpe) desde o dia 22 de fevereiro de 2010.

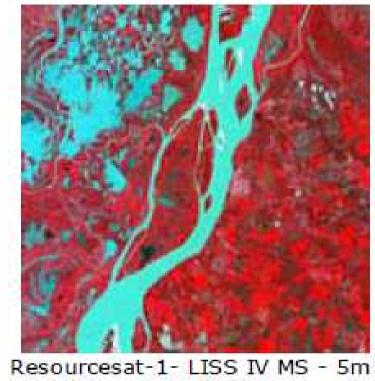
Características do Satélite			
Lançamento 17/10/2003			
Orbita	Polar, heliossíncrona		
Altitude	817 Km		
Inclinação	98,715 º		
Tempo de duração da órbita	24 dias		
Horário de passagem na	10:30		
linha do equador			
Período de revisita	5 dias		

Sensores


Liss-3

Parâmetro				
Resolução espacial (m)	Comprimento 23,5 Largura: 22		ıra: 22	
Largura da faixa imageada	141 Km			
Bandas (μm)	B2	В3	B4	B5
	0,52-0,59	0,62-0,68	0,77-0,86	1,55-1,70
Resolução Radiométrica		7 b	its	

Sensores


AWiFS

Parâmetro	Valor			
Resolução espacial (m)	Comprimento: 56 Largura: 66		ıra: 66	
Largura da faixa imageada	737 Km com 2 sensores 370 km com 1 sensor			
Bandas (μm)	В2	В3	B4	B5
	0,52-0,59	0,62-0,68	0,77-0,86	1,55-1,70
Resolução Radiométrica	10 bits			

Sensor

Liss-4

Vila Hermandaria - Argentina

O LISS-IV opera em três bandas espectrais, no Visível e no Infra-Vermelho Próximo (VNIR) ou no modo PAN com 5.8 metros de resolução espacial;

Possui a capacidade de ângulo de visada de +/- 26 graus para obter imagens estereoscópicas;

Capacidade de 5 dias de revisita.

Sensor	Produto	Tamanho da imagem	Tipo	Resolução	Bandas	Revisita
LISS-3	Cena completa	141 por 141 Km	Colorido	23 m	4 bandas	24 dias
LISS-3	Quadrante	70 por 70 Km	Colorido	23 m	4 bandas	24 dias
LISS-4	Cena completa	70 por 70 Km	P&B	5 m	1 banda	5 dias
LISS-4	Subcena	23 por 23 Km	Colorido	5 m	3 bandas	5 dias
ISS-3 + LISS 4	Cena completa	70 por 70 Km	colorida	5 m	3 banda	5 dias
AWiFS	Cena completa	700 por 700 Km	Colorido	55 m	4 bandas	5 dias
AWiFS	Quadrante	370 por 370 Km	Colorido	55 m	4 bandas	5 dias

Lançado em 20/04/2011.

Melhorias:

A largura multiespectral máx. do LISS-IV aumentou de 23 para 70km.

Miniaturização da eletrônica embarcada e outras adaptações.

Melhora na precisão radiométrica de 7 para 10 bits no LIS-III e no LIS-IV; e de 10 para 12 no AWiFS.

Armazenamento de 200GB em imagens digitais

RapidEye é uma constelação de 5 micro-satélites que foi lançada no dia 29 de agosto de 2008. Era controlada pela empresa *RapidEye AG* localizada em Brandenburg an der Havel, no estado de Brandenburgo perto de Berlim, na Alemanha.

A RapidEye AG é uma empresa de dados e serviços geo-espaciais baseados em imagens de satélite para serem usados nas seguintes áreas:

Agricultura
Floresta
Seguro
Óleo & Gás
Governos
Cartografia
Visualização & Simulação

Cada satélite da constelação mede menos de um metro cúbico e tem peso total de 150 kg

Dados Técnicos

5

Número de Satélites

Altitude da Órbita 630 km, órbita síncrona com o sol

Hora de Passagem no Equador 11:00 hs (aproximadamente)

Velocidade 27.000 km/h

Largura da Imagem 77 km

Tempo de Revisita

Diariamente (off-nadir)
5,5 Dias (nadir)

Capacidade de Coleta 4,5 milhões de Km²/dia

Tipo do Sensor Multiespectral (pushbroom imager)

Bandas Espectrais 5 (Red, Green, Blue, Red Edge, Near IR)

Resolução Espacial (nadir) 6,5 m

Tamanho do Pixel (ortorretificado) 5 m

Armazenamento de Dados a Bordo 1.500 km de dados de imagens por órbita

Resolução Radiométrica 12 bits

Velocidade de Download (banda X) 80 Mbps

Cada um dos cinco satélites RapidEye é equipado com um sensor multiespectral capaz de capturar imagens em cinco bandas espectrais;

Comprimento de onda entre 440 µm e 850 µm.

É o primeiro sistema orbital que inclui a banda Red Edge, específica para o monitoramento da atividade fotossintética da vegetação.

A resolução espacial de cada banda após a ortorretificação é de 5 metros, que resulta em imagens com precisão de detalhes compatível com escala 1:25.000.

Bandas Espectrais

440 - 510 μm | Azul

520 - 590 μm | Verde

630 – 685 μm | Vermelho

690 – 730 μm Red-Edge

760 – 850 μm | Infra-vermelho próximo

Níveis de Processamento dos Produtos			
Nível 0	Imagens brutas, metadados e dados de calibração (efemérides). Somente para uso interno.		
Nível 1	Produto Nível-Sensor Imagens com correção radiométrica a partir dos dados de efemérides e atitude dos satélites.		
Nível 2	Produto Geo-Corrigido Imagens com correção radiométrica e geométrica a partir dos dados de efemérides e atitude dos satélites, sem uso de pontos de controle.		
Nível 3	Produto Ortorretificado Imagens com correção radiométrica e geométrica a partir de DEM SRTM (Nível 1 DTED) ou melhor, com uso de pontos de controle. Podem atingir exatidão de 6m (12,7m CE90), compatível com escala 1:25.000.		

A RapidEye já entrega as imagens ortorretificadas com resolução de 5 metros, sem nenhum custo adicional. Com a adição de pontos de controle apropriados, é possível obter um produto compatível com a escala 1:25.000.

Como o setor agrícola não faz uso de imagens inteiras, o representante fornece partes de imagens que compreendem as áreas de produção.

A empresa Santiago e Cintra comercializa imagens apenas das lavouras onde o produtor tem interesse em obter dados, sendo apenas necessário fornecer o polígono de contorno da área, e assim empresa fornece apena a imagem interna ao polígono.

A compra de partes da imagem, e não a mesma completa, baixa enormemente o custo de aquisição da informação! Porém segundo alguns produtores, o custo de aquisição ainda continua alto.

Quickbird

Lançamento	18/10/2001
Situação Atual	Ativo
Órbita	Heliossíncrona
Altitude	450 km
Inclinação	98°
Tempo de Duração da Órbita	93,4 min
Horário de Passagem	s.d.
Período de Revisita	Máximo 3,5 dias
Instrumentos Sensores	QUICKBIRD

Quickbird

Sensor	Bandas Espectrais	Resolução Espectral	Resolução Espacial	Resolução Temporal	Faixa Imageada
QUICKBIRD	PANCROMÁTICA	450 - 900 nm	61 a 72 cm		
	MULTIESPECTRAL (Visível)	450 - 520 nm 520 - 600 nm 630 - 690 nm	2,4 a 2,8 m	1 a 3,5 dias, dependendo da latitude	16,5 x 16,5 km

Quickbird

Exemplo (Pirâmides, Egito):

WorldView-1

Altitude de órbita	496 km
Tempo de órbita	94,6 min
Período para revisita	1,7 dia ao nadir / <5,9 dias com 20°
Passagem no equador	10:30 am
Sensor	Pancromática
Resolução espacial	50 cm
Resolução espectral	11 bits
Tamanho da imagem	17,6 km x 14 km

WorldView-2

Lançado em órbita em outubro de 2009, o WorldView-2 é o primeiro satélite comercial de alta resolução a oferecer até 8 bandas multiespectrais.

Operando numa altitude de 770 quilômetros, o satélite captura imagens com até 30 cm de resolução no modo Pancromático e 1,84m no modo Multiespectral.

Comercialmente, as imagens são fornecidas com **50 cm de resolução espacial** no modo pancromático e 2,0m de resolução espacial no modo multiespectral em função das condições estabelecidas pelo governo dos EUA.

WorldView-2

Altitude de órbita	770 km
Tempo de órbita	100 min
Período para revisita	1,1 dia ao nadir / < 3,7 dias com 20°
Passagem no equador	10:30 am
Sensor	Pancromática e Multiespectral
Resolução espacial	P=0,46 m e M=2,4 m
Resolução espectral	11 bits
Tamanho da imagem	16,4 km

WorldView-2

4 bandas padrão: (vermelho, verde, azul e NIR1);

WorldView-2

Resolução

50cm (PAN) 1,84m (MULT)

Pancromática

Multiespectrais:

- •1. Vermelha
- •2. Azul
- •3. Verde
- •4. Infravermelho próximo
 - •5. Azul costal
 - •6. Red Edge
 - •7. Amarela
 - •8. Infra vermelho próximo-2

Precisão

6,5m CE90

Satélite TERRA

MODIS (Moderate Resolution Imaging Spectroradiometer) é um dos cinco sensores a bordo do satélite TERRA

O TERRA opera numa órbita polar e síncrona com o Sol com uma inclinação de aproximadamente 98,2 graus, período orbital de 98,88 minutos e hora do cruzamento na descendente às 10:30 am

A altitude média é de 705 Km e a velocidade no solo é 6,7 km/seg. A distância entre órbitas adjacentes é de 172 km e o ciclo de recorrência é de 16 dias no equador (233 órbitas).

Modis avalia:

Temperatura da superfície (solo e oceano) e detecção de incêndio;

Cor do oceano (sedimento, fitoplancto);

Mapas da vegetação global e detecção de mudanças;

Características da nuvem;

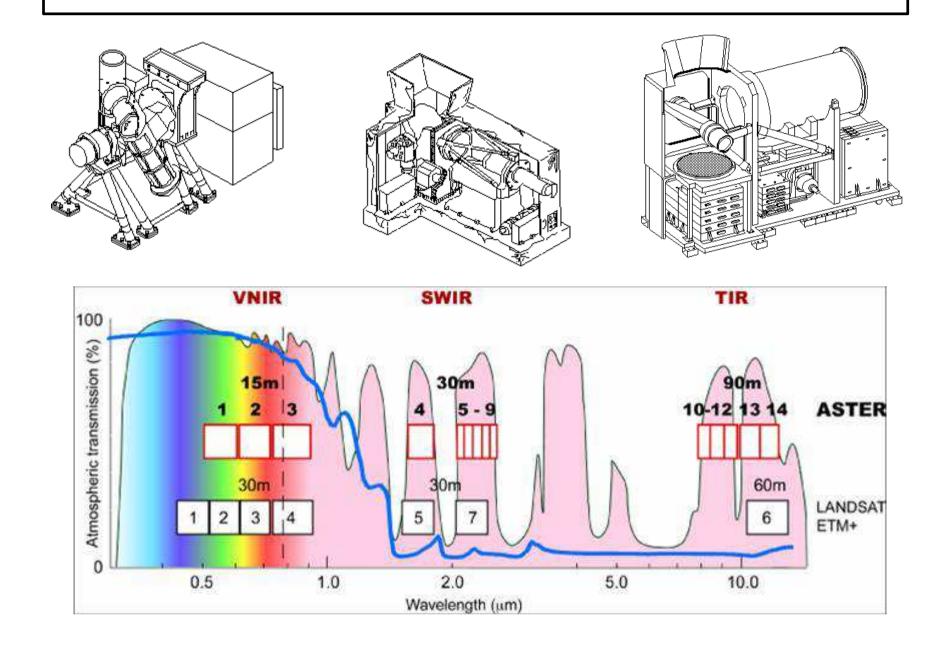
Concentrações de aerossóis e propriedades;

Utilização:

Fornecer medidas globais de cada estação climática do sistema da Terra (produtividade biológica do solo e oceanos, neve e gelo, temperatura da superfície, nuvens, vapor d'água e cobertura do solo)

Aperfeiçoar nossa habilidade de detectar impactos humanos no sistema da Terra e no clima

Ajudar a desenvolver tecnologias para prever desastres, caracterização, redução de riscos de grandes incêndios, vulcões, enchentes e secas

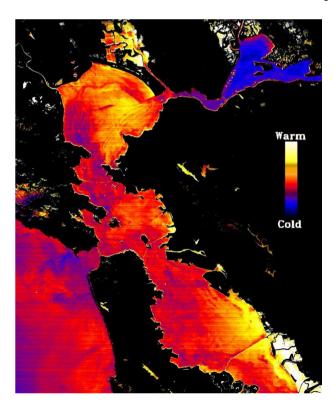

Disponibilizar monitoramento a longo-prazo da mudança do clima global e do ambiente.

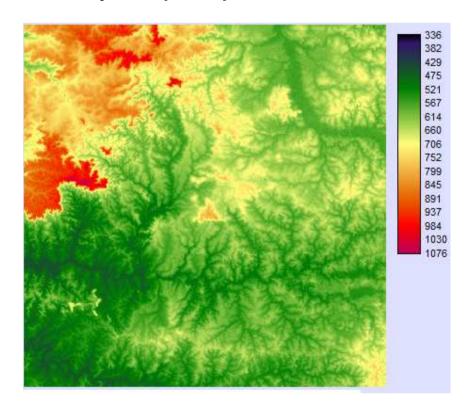
Características do MODIS		
Cobertura Espectral	0.4 – 14.4 μm	
Resolução espectral	Multiespectral de 36 bandas	
Cobertura espacial	55°, 2330 km em fileiras	
Resolução espacial	250m (2 bandas), 500m (5 bandas e 1000m (29 bandas)	
Resolução temporal	1-2 dias	
Resolução Radiométrica	12 bits	
Massa	274 kg	

Atualmente no Brasil imagens do sensor MODIS são utilizadas para detecção de focos de incêndio, por pesquisadores do INPE, trabalhando em conjunto com o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), por meio do Programa de Monitoramento de Queimadas e Prevenção e Controle de Incêndios Florestais no Arco do Desflorestamento na Amazônia (PROARCO).

Esse programa abrange, além do Brasil, os países sul-americanos: Bolívia, Paraguai e Peru, e utiliza imagens de outros satélites como o NOAA e GOES.

Sensor ASTER




Sensor ASTER

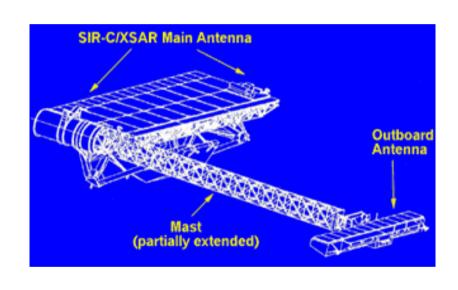
600 imagens dia cobrindo 60 x 60 km

É o único instrumento de alta resolução espacial no satélite

Alta resolução e habilidade para mudar o ângulo de visada, o instrumento ASTER produz imagens estereoscópicas (DEM).



Missão SRTM


Em 11 de Fevereiro de 2000, a missão SRTM foi lançada ao espaço a bordo do onibus espacial Endeavour.

Recobriu a maior parte da superficie terrestre em 10 dias de operação.

Missão SRTM

Equipamento

Antena Principal

Transmitir o pulso do radar, que foi recapturado por seus painéis após interação com a Terra

Mastro

60 metros, suporte para antena externa

Antena Externa

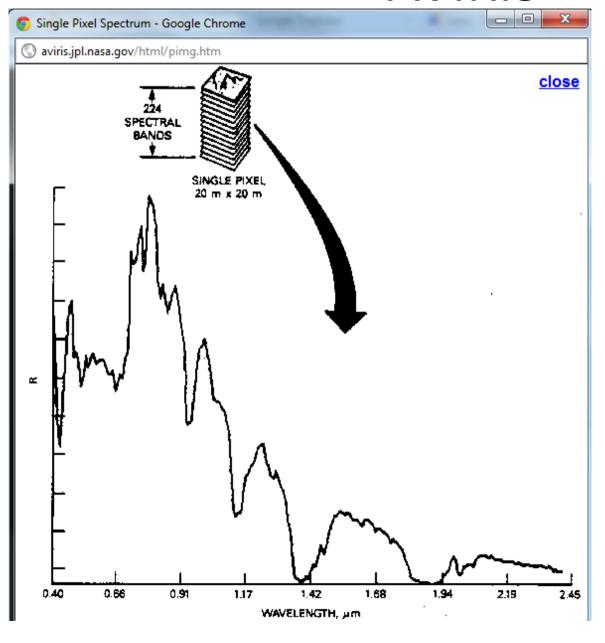
Painéis especiais que recebem o mesmo sinal capturado pela antena principal

Missão SRTM

O radar SRTM contem pulsos na Banda C e Banda X, contudo somente dados da banda C estao disponíveis para todo o mundo, já os dados da banda X são mais detalhados mas estão disponíveis apenas para alguns.

Sensor	Resolução	Pixel
C-band and X-band	1 arc seg.	30 metros
	3 arc seg.	90 metros
	30 arc seg.	1 Km
Faixa	Projeção	
185 X 185 Km	UTM	

Os dados do radar SRTM permitiram criar mapas topograficos detalhados da superfície terrestre usando a técnica de interferometria (Estudo dos padrões de interferencia causados em um mesmo sinal de radar recebidos por duas antenas diferentes.


AVIRIS

ESPECTROMETRO AÉREO DE IMAGENS VISÍVEIS E INFRAVERMELHAS

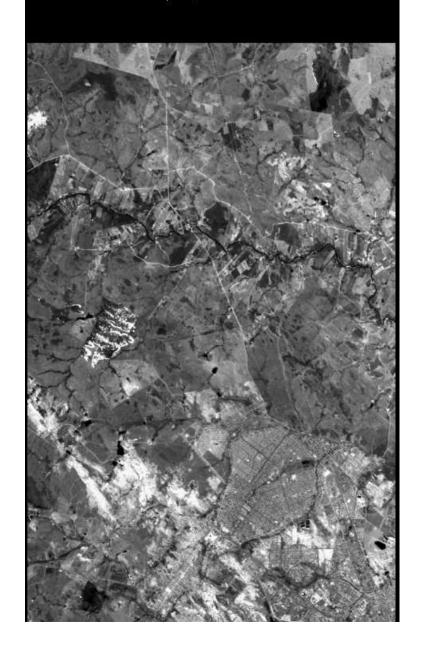
- Avaliar quantitativamente os componentes do Sistema Terrestre a partir de espectros calibrados adquiridos como imagens para aplicações em pesquisas científicas;
- Detectar e identificar a superfície e constituintes atmosféricos presentes;
- Avaliar e medir as concentrações dos constituintes;
- Determinar a distribuição espacial dos componentes;
- Acompanhar as mudanças nos constituintes por meio de aquisições periódicas de dados;
- Simular, calibrar e comparar sensores validar e melhorar os modelos.

AVIRIS

400 - Ultravioleta Visível

até

2450 - Inframermelho


AVIRIS

Exemplo (1501,4 nm)

- Google Chrome

pimg.htm

AVIRIS: Cuiaba, Brazil 25 Aug 1995 Band (122) = 1591.4 nm

