AULA 9: TERMODINÂMICA DE SISTEMAS GASOSOS (continuação)

ENERGIA TOTAL E ENERGIA INTERNA

Ao estudar, termodinamicamente, um sistema, seu meio e os processos aos quais estão sujeitos, freqüentemente estamos interessados nas transferências de energia envolvidas. Na primeira aula já havíamos verificado que existem as energias cinética (E_c) e potencial (E_{pot}). Em estudos termodinâmicos, esses dois tipos, no entanto, normalmente assumem um papel menos importante por serem considerados constantes ao longo dos processos. Nesses estudos, um terceiro tipo de energia, a *energia* interna (U), é a mais importante. A energia interna, como a energia potencial, pode ser subdividida em diferentes tipos, como, por exemplo, a *energia térmica*, a *energia nuclear* e a *energia química*. Dessa forma:

$$E_{tot} = E_c + E_{pot} + U \tag{9.1}$$

e como consideramos $\Delta E_c = 0$ e $\Delta E_{not} = 0$ temos:

$$\Delta E_{...} = \Delta U \tag{9.2}$$

$$U = E_{tarmica} + E_{nuclear} + E_{quimica} + \dots$$
 (9.3)

Nos assuntos abordados nesse capítulo consideramos que as energias nuclear e química serão constantes, ou seja, não haverá reações químicas ou nucleares. Em conseqüência, de acordo com as equações 9.2 e 9.3, temos:

$$\Delta E_{tot} = \Delta U = \Delta E_{t\acute{e}rmica} \tag{9.4}$$

As variações na energia interna resultarão em variações da energia térmica e da temperatura, e vice versa (ver aula 5).

TRANSFERÊNCIA DE ENERGIA

Na aula anterior vimos que um sistema perde energia ao meio quando se expande e ganha energia do meio quando é comprimido. Chamamos essa forma de transferência de energia *Trabalho* (W). Durante as primeiras aulas do semestre aprendemos que um corpo (sistema) pode emitir e/ou absorver radiação eletromagnética. Esse tipo de transferência de energia é chamado de *Calor* (Q). *Calor e trabalho são os dois tipos de transferência de energia entre o sistema e o*

LCE-200 Física do Ambiente Agrícola

meio. Existem, além da radiação eletromagnética, mais duas formas de calor: a condução e a convecção. Enquanto a transferência por radiação eletromagnética pode ocorrer pelo vácuo, a condução depende da presença de matéria, pois é realizada pela transferência de energia de molécula para molécula. A convecção é a transferência de energia por fluxo de matéria: uma quantidade de matéria do sistema, com a sua energia interna, se transfere para o meio. Essa última forma de transferência de energia é apenas possível em um sistema aberto de fluidos.

A PRIMEIRA LEI DA TERMODINÂMICA

A primeira lei da termodinâmica nada mais é do que uma interpretação termodinâmica do princípio de conservação de energia: a soma do calor e do trabalho definirá a variação da energia interna do sistema:

$$\Delta U = Q + W \tag{9.5}$$

Combinando a equação 9.5 com a 7.15, que define o trabalho:

$$W = -P_{ex}.\Delta V$$

obtém-se

$$\Delta U = Q - P_{ox} \Delta V \tag{9.6}$$

O PROCESSO ISOBÁRICO E ENTALPIA

Uma grande gama de processos ao nosso redor ocorrem sem limitação de volume e, portanto, a pressão durante esses processos se mantém constante, igual à pressão atmosférica. Esse tipo de processo, no qual a pressão não varia, é chamado *processo isobárico*. Verificamos, para esses processos, a partir da equação 9.6, que:

$$\Delta U = Q_p - P_{ex} \Delta V \Rightarrow$$

$$U_2 - U_1 = Q_p - P_{ex} (V_2 - V_1) \Rightarrow$$

$$U_2 - U_1 = Q_p - P_{ex} V_2 - P_{ex} V_1 \Rightarrow$$

$$Q_p = (U_2 + PV_2) - (U_1 + PV_1) \qquad (9.7)$$

onde Q_p é o calor do processo isobárico. A quantidade U+PV que aparece na equação 9.7 é denominada em termodinâmica de *entalpia* (H), isto é, define-se, na termodinâmica, uma função chamada *entalpia* como a soma da energia interna e o produto de pressão e volume:

$$H = U + PV \tag{9.8}$$

81

Aula 9:Ttermodinâmica de sistemas gasosos (continuação)

Combinando a equação 9.7 com a 9.8 temos, para um processo isobárico:

$$Q_p = H_2 - H_1 = \Delta H \tag{9.9}$$

Em palavras: o calor de um processo isobárico é igual à variação da entalpia. Daí a razão de ter-se definido a entalpia conforme a equação 9.8. Entendemos agora porque utilizamos, na química, tabelas com a entalpia de combustão, de formação, de ionização, de hidratação etc. É porque esses processo ocorrem, normalmente, a pressão constante e os valores da entalpia indicam, portanto, o calor liberado, ou consumido, pelo processo.

Em resumo temos que, para um processo isobárico ($\Delta P = 0$):

$$\Delta U = Q_p + W = Q_p - P\Delta V$$

$$\Delta H = \Delta U + \Delta PV = Q_p - P\Delta V + P\Delta V = Q_p$$

O PROCESSO ISOVOLUMÉTRICO

Alguns processos, principalmente aqueles que se realizam dentro de recipientes rígidos, ocorrem sem que haja alteração de volume. Um processo assim é chamado *processo isovolumétrico* ou *isocórico*. Para um processo isovolumétrico, como $\Delta V = 0$, a equação 9.6 simplifica para:

$$\Delta U = Q_{v} \tag{9.10}$$

onde Q_v é o calor do processo isovolumétrico. Como não há trabalho envolvido $(\Delta V = 0)$, a variação da energia interna é igual ao calor.

Em resumo temos que, para um processo isovolumétrico:

$$\Delta U = Q_v + W = Q_v - P\Delta V = Q_v$$
$$\Delta H = \Delta U + \Delta PV = Q_v + V\Delta P$$

CAPACIDADE CALÓRICA E CALOR ESPECÍFICO

Definimos uma grandeza extensiva chamada *capacidade calórica* (*C*, J K⁻¹) como sendo o calor por unidade de variação da temperatura de um sistema:

$$C = \frac{Q}{\Lambda T} \tag{9.11}$$

Em outras palavras, a capacidade calórica indica quanto calor será necessário para elevar a temperatura de um sistema de um grau Celsius ou Kelvin. Podemos transformar a capacidade calórica numa grandeza intensiva, dividindo seu valor ou pelo volume, ou pela massa ou pelo número de moles do sistema. Nesse

LCE-200 Física do Ambiente Agrícola

caso, a grandeza é chamada de *calor específico* a base de volume $(\bar{c}, JK^{-1}m^{-3})$, a base de massa $(\bar{c}, JK^{-1}kg^{-1})$ ou a base molar $(\bar{c}, JK^{-1}mol^{-1})$:

$$\overline{c} = \frac{C}{V}$$
 ou $\overline{c} = \frac{C}{m}$ ou $\overline{c} = \frac{C}{n}$ (9.12)

No item anterior verificamos que o calor para um processo isobárico (equação 9.7) é diferente do de um processo isovolumétrico (equação 9.10). Dessa forma, a capacidade calórica e o calor específico também serão diferentes, em função do tipo de processo. Assim, a *capacidade calórica isovolumétrica* (C_v , J K⁻¹) é igual a

$$C_{v} = \frac{Q_{v}}{\Lambda T} = \frac{\Delta U}{\Lambda T} \tag{9.13}$$

e a capacidade calórica isobárica (Cp, JK-1) é igual a

$$C_p = \frac{Q_p}{\Lambda T} = \frac{\Delta H}{\Lambda T} \tag{9.14}$$

Da mesma forma que definimos \bar{c} em função de C (equação 9.12), definimos \bar{c}_v em função de C_v e \bar{c}_p em função de C_p .

A RELAÇÃO ENTRE \bar{c}_{p} E \bar{c}_{v}

É fácil entender que para sistemas gasosos \overline{c}_p será sempre maior que \overline{c}_v pois, ao aquecer um gás isobaricamente o seu volume aumenta, resultando em perda de energia do sistema por trabalho. Assim, a mesma quantidade de calor resultará num ΔT menor e, conseqüentemente, um \overline{c} maior. No caso de um processo isovolumétrico o trabalho será 0. Deduzimos, a seguir, uma relação quantitativa para essa diferença.

A partir da definição de entalpia (equação 9.8) verificamos que

$$\Delta H = \Delta U + \Delta PV \tag{9.15}$$

Das equações 9.13 e 9.14 segue que

$$\Delta U = C_{\nu} \Delta T \tag{9.16}$$

$$\Delta H = C_{p} \Delta T \tag{9.17}$$

e da equação universal de gases (equação 7.6):

$$\Delta PV = \Delta nRT = nR\Delta T \tag{9.18}$$

Substituindo as equação 9.16, 9.17 e 9.18 na 9.15 obtemos:

83

Aula 9:Ttermodinâmica de sistemas gasosos (continuação)

$$C_{n}\Delta T = C_{v}\Delta T + nR\Delta T \Rightarrow C_{n} = C_{v} + nR \tag{9.19}$$

Como o calor específico molar (\bar{c}) é a capacidade calórica (C) dividida pelo número de moles (n), podemos escrever a equação 9.19 como:

$$\overline{c}_{n} = \overline{c}_{v} + R \tag{9.20}$$

Verificamos que a diferença entre \bar{c}_{ν} e \bar{c}_{p} é exatamente a constante universal de gases R, ou seja, $8.314 \,\mathrm{J}$ mol⁻¹ K^{-1} .

O valor do calor específico de gases ideais pode ser deduzido teoricamente. Não detalhamos, aqui, essa dedução, mas apresentaremos apenas o resultado final:

para gases ideais monoatômicos: $\overline{c}_v = \frac{3}{2}R$ e, pela equação 9.20, $\overline{c}_p = \frac{5}{2}R$

para gases ideais diatômicos: $\overline{c}_{_{V}}=\frac{5}{2}R$ e, pela equação 9.20, $\overline{c}_{_{P}}=\frac{7}{2}R$

O PROCESSO ISOTÉRMICO

Um processo isotérmico é aquele em que não há variação de temperatura do sistema ($\Delta T = 0$). Já vimos (equação 9.16) que

$$\Delta U = C_{yy} \Delta T$$

Portanto, para um processo isotérmico ($\Delta T=0$) resulta que $\Delta U=0$. Consequentemente, em resumo:

$$\Delta U = Q + W = 0 \Rightarrow Q = -W$$

$$\Delta H = \Delta U + \Delta PV = \Delta U + \Delta nRT = \Delta U + nR\Delta T = 0 + 0 = 0$$

LCE-200 Física do Ambiente Agrícola

EXERCÍCIOS

- 1. O ar atmosférico pode ser considerado um gás diatômico.
 - a) Calcule o calor específico a base molar, a base de massa e a base de volume, do ar atmosférica à pressão de $10^5\,\mathrm{Pa}~(\approx~1~\mathrm{atm})$ e à temperatura de 300 K.
 - Faça uma estimativa da quantidade de ar presente na sala de aula, e calcule sua capacidade calórica.
 - c) Quanto tempo um aquecedor de ar de 1000 W deveria ficar ligado para aumentar a temperatura do ar na sala em 10 °C?
 - d) Quanto tempo um ebulidor com a mesma potência gasta para aumentar a temperatura de 1 m³ de água ($\bar{c}_{p,\acute{a}gua}$ = 4180 J K⁻¹ kg⁻¹) em 10 °C′?
- 2. O volume molar de água líquida a 373 K e 10⁵ Pa é de 1,88.10⁻⁵ m³.mol⁻¹. O volume molar de vapor de água à mesma temperatura e pressão é de 3,06.10⁻² m³.mol⁻¹. O calor de vaporização nessas mesmas condições é de 40,79 kJ.mol⁻¹. Calcular ΔH e ΔU para um mol de H₂O passando pelo seguinte processo:

$$H_2O$$
 (líquido, 373 K, 10^5 Pa) $\to H_2O$ (gás, 373 K, 10^5 Pa)

3. Calcular a diferença entre ΔH e ΔU para a conversão de 1 kg de grafite (ρ = 2250 kg.m⁻³) em 1 kg de diamante (ρ = 3520 kg.m⁻³), sabendo que essa conversão ocorre na crosta terrestre a pressões da ordem de grandeza de 20 000 atm (1 atm equivale a 10⁵ Pa).

Respostas: **1.** a)29,1 J mol⁻¹ K⁻¹; 1010 J kg⁻¹ K⁻¹; 1164 J m⁻³ K⁻¹; **b**)para 600 m³: 700 kJ K⁻¹; **c**) ± 2 horas **d**) ± 12 horas; **2.** a)40,79 kJ; 37,73 kJ; **3.** 320 kJ;