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Abstract Air temperature is one of themain weather variables
influencing agriculture around the world. Its availability, how-
ever, is a concern, mainly in Brazil where the weather stations
are more concentrated on the coastal regions of the country.
Therefore, the present study had as an objective to develop
models for estimating monthly and annual mean air tempera-
ture for the Brazilian territory using multiple regression and
geographic information system techniques. Temperature data
from 2,400 stations distributed across the Brazilian territory
were used, 1,800 to develop the equations and 600 for validat-
ing them, as well as their geographical coordinates and altitude
as independent variables for the models. A total of 39 models
were developed, relating the dependent variables maximum,

mean, and minimum air temperatures (monthly and annual) to
the independent variables latitude, longitude, altitude, and
their combinations. All regression models were statistically
significant (α≤0.01). The monthly and annual temperature
models presented determination coefficients between 0.54
and 0.96. We obtained an overall spatial correlation higher
than 0.9 between the models proposed and the 16 major
models already published for some Brazilian regions, consid-
ering a total of 3.67×108pixels evaluated. Our national tem-
perature models are recommended to predict air temperature in
all Brazilian territories.

1 Introduction

Air temperature is one of the major effects of solar radiation in
the lower Earth atmosphere resulting from sensible heat trans-
port, conduction and diffusion processes (Pereira et al. 2002).
Air temperature controls the growth and development of most
living organisms through its effect on enzymatic reactions that
control physiological processes (Raven et al. 2007; Taiz and
Zeiger 2009; Schmidt-Nielsen 2010). Extreme temperatures
influence the geographical distribution of plants (Jeffree and
Jeffree 1994; Larcher 2000), whichmakes possible classifying
plants according to their thermal tolerance or requirement
(Rizzini 1997). In agriculture and forestry, air temperature
together with rainfall are the main factors defining crop zon-
ing, sowing dates, and the expected yield levels.

Temporal and spatial variations of air temperature are reg-
ulated by solar radiation balance at the Earth’s surface. On a
geographical scale or macroscale, temperature is influenced
by latitude (solar radiation), altitude, cloud cover, predomi-
nant winds, ocean streams, continentality, and air masses
(Pereira et al. 2002; Dias and Silva 2009). Consequently, air
temperature is traditionally measured in a standard condition,
with the sensors inside a shelter at 1.5- 2.0 m height in a flat
and lawn ground. These protocols are intended to minimize
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the influence of local conditions, with respect to topoclimate
(relief) and microclimate (ground cover) factors, measuring
the larger influences of macroclimate conditions to allow
comparisons among locations (Pereira et al. 2002).

Proper measurement, interpretation, and prediction of
weather conditions are essential to the success of agricultur-
al activities, and national meteorological networks are im-
portant providers of reliable data. The recommended
densities of weather stations in a network are 9,000 km2

per station on the coast; 5,750 km2 per station in flat and
ondulate areas in the interior; and 2,500 km2 per station in
mountainous regions (WMO 1994). However, the density of
weather stations in Brazil is very low, and in some areas
there are no stations at all (Hijmans et al. 2005; Peel et al.
2007; Hamada et al. 2008; Rusticucci 2011).

Brazil has an area of 8,514,876.599 km2 (IGBE 2002)
and occupies nearly 48 % of South America, between the
parallels 5°16′ N and 33°45′ S and between the meridians
34°47′ W and 73°59′ W, and is commonly referred to as a
country of continental dimensions. Topography varies sub-
stantially and is classified as plateaus, plains, and depres-
sions (Ross 1989). On average, Brazil is considered a low-
lying country, where 41 % of its territory lies below 200 m,
mainly in the plains of the Amazon River, Pantanal of Mato
Grosso, Araguaia River, the Coastal Plains, and peripherical
depression in the south. Only 7 % of the Brazilian territory
is above 800 m, and these areas are concentrated in the
mountains and highlands of the eastern and southeastern
Atlantic regions, in the mountains and highlands of Goiás
and Minas Gerais states, in the Borborema Plateau, and part
of the plateau and table lands of the Parnaíba River basin.

The Brazilian territory has a wide climate diversity (Nimer
1979) and can be classified into five major areas: (1) the south
(S) is dominated by a temperate climate of low diversity, but
experiences notable thermal fluctuations throughout the year;
(2) the southeast (SE) is a transitional region between the
warm climates of low latitudes and the temperate climate of
middle latitudes; (3) the central west (CW) presents a domain
of high temperatures in spring and summer and mild in winter;
(4) the northeast (NE) is where high temperatures are predom-
inant throughout the year, but with two major climatic types
(hot and warm); and (5) the northern region (N) is always hot,
without seasonal temperature fluctuation.

Historical monthly air temperature data are not available
for many locations in Brazil, primarily in the states within
the CW and N regions. An alternative to make this data
readily available is to estimate it with linear models consid-
ering geographical coordinates and altitude as independent
variables (Varejão-Silva 2006). Since climate data exist as
measurements at discrete points and many different methods
have been developed to generate regional maps from point
data, as complex interpolation methodologies, simple re-
gression equations relating climate to grid position and

elevation can summarize much of the spatial variation in
climate data (Goodale et al. 1998). Usually, the normal
monthly mean air temperature is estimated with the use of
multiple linear regressions, and this method can be as effec-
tive as sophisticated local interpolation methods, especially
when dealing with mean climatic data (Kurtzman and
Kadmon 1999; Chuanyan et al. 2005). Such techniques have
been applied in many parts of Brazil and around the world.
The first study in Brazil that used topography to estimate
meteorological parameters was done by Setzer (1946), in the
state of São Paulo, using a simple regional temperature
gradient as a function of altitude. In eastern Africa, regres-
sion equations to calculate the normal temperatures accord-
ing to altitude were presented by Brow and Cocheme
(1969). In the UK, Lennon and Turner (1995) developed
models to estimate mean monthly temperature; however,
they were very complex, limiting their application. In the
northeastern USA, Ollinger et al. (1995) developed reason-
able linear models to estimate the minimum and maximum
air temperature. Similar models were developed by Goodale
et al. (1998) for estimating maximum and minimum month-
ly temperatures in Ireland. In northeastern Spain, Ninyerola
et al. (2000) applied multiple linear regression models to
estimate maximum and minimum monthly temperatures
using altitude, latitude, and longitude as independent varia-
bles. In Italy, Claps et al. (2008) calibrated equations for
annual and monthly mean air temperature, and Boi et al.
(2011) implemented a similar methodology in the study of
monthly air temperature in Sardinia state. Lately, Gouvas et
al. (2011) developed regression models for estimating
monthly temperature for the whole Greece territory. In
Lower Saxony, Germany, multiple linear regressions were
also successfully used by Mues et al. (2002) to estimate air
temperature. In the Durango region of Mexico, Gómez et al.
(2008) presented reliable equations for estimating monthly
mean temperature based only on altitude. In Asia, Chuanyan
et al. (2005) and Guan et al. (2009) adjusted monthly equa-
tions for estimating the mean air temperature in the mountain-
ous regions of China and Taiwan, respectively, based on the
altitude, latitude, and longitude.

In Brazil, coefficients for linear models for estimatingmean
air temperature as a function of latitude, longitude, and alti-
tude are available for approximately 50 % of the territory.
Studies with this technique started in early 1970s, in the states
of Rio Grande do Sul (Ferreira et al. 1971), Santa Catarina
(Buriol et al. 1974), Paraná (Pinto and Alfonsi 1974), São
Paulo (Pinto et al. 1972), and Goiás (Alfonso et al. 1974), and
were used as a tool for the agroclimatic crop zoning programs
which required growing degree days, minimum and maxi-
mum thresholds, and chilling hours (Mota 1975; Pereira et
al. 2002; Mavi and Tupper 2004). Subsequently, air tempera-
ture linear models were applied in other Brazilian states such
as Southeastern Bahia (Almeida and Sá 1984), Minas Gerais
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(Sediyama and Melo Junior 1998); Piauí (Lima and Ribeiro
1998), Espírito Santo (Feitoza et al. 1979; Feitoza et al. 1980a;
Feitoza et al. 1980b; Pezzopane et al. 2004), and Pará (Ferreira
et al. 2006), with varying precisions and accuracies.
Moreover, many of these studies were limited to capture the
local variability completely, i.e., the estimates are not valid for
the wide coastal ranges of the states of São Paulo (Pinto et al.
1972; Pedro Junior et al. 1991; Valeriano and Picini 2000),
Paraná (Pinto and Alfonsi 1974), Rio Grande do Sul
(Estefanel et al. 1973; Ferreira et al. 1971; Buriol et al.
1973), and Santa Catarina (Buriol et al. 1974; Ferreira et al.
1974). Another point is that a great part of the country does not
yet have models developed to estimate temperature, limiting
climatological and agrometeorological studies.

Based on the results found by previous studies and on the
lack of temperature models for all countries, our study sug-
gests that is possible to estimate historical monthly mean air
temperatures for all Brazilian territories using multiple regres-
sionmodels, having as independent variables the geographical
coordinates and altitude and their integration. In accordance
with to that, our objectives were (1) to develop models for
estimating monthly and annual maximum, minimum, and
mean air temperatures for the whole Brazilian territory; (2)
to evaluate the performance of the national models by com-
paring their results with those from regional models previous-
ly published and also with independent data; and (3) to
elaborate annual air temperature maps based on the models
and extracted information from all Brazilian capitals.

2 Material and methods

The study was conducted in several steps that included data
compilation, exploratory analysis, data consistency, compi-
lation in a geodatabase using a geographic information
system, geoprocessing techniques, static descriptive ana-
lyzes, multivariate statistics, and geostatistics in a sequence
of routine activities, as shown in Fig. 1.

The complete database used in this study comes from
Brazilian institutions such as the National Institute of
Meteorology (Brazil 1992), National Department of
Works Against Droughts and Northeast Development
Superintendency, and also the Food and Agriculture
Organization of the United Nations (FAO 2001). At the be-
ginning of the study, we compiled a total of 5,769 weather
stations with data of the maximum, minimum, and mean
monthly air temperature. Data were screened to filter out
erroneous data of altitude, geographical coordinates, and nor-
mal monthly and annual temperature values. Meteorological
stations were considered with historical series when presented
more than 10 years of measurements for the period from 1950
to 1990. Based on this criterion, more than 50 % of weather
stations presented more than 30 years of data. Thereby, the

whole database can be considered long enough to ensure an
appropriate climate modeling, according to results from
Goodale et al. (1998), Marquinez et al. (2003), Rodríguez-
Lado et al. (2007), Mello and Silva (2009), and Gouvas et al.
(2011). Following the screening, we obtained a collection of
2,400 weather stations, titled consisted database, withmonthly
and annual maximum, mean, and minimum air temperature
data to be used as the basis for the modeling process.

Weather stations are concentrated in densely populated
regions of Brazil and also stratified by states for political and
economic issues. In the Capricorn Tropic region, the amount is
higher in the states of São Paulo and Paraná, where agriculture
is older and more developed. Northeastern Brazil had large
investments in the past for monitoring the drought in the semi-
arid area, so there is a high spatial density of weather stations
(Fig. 2). An important consideration is that the weather stations
were located with a spatial distribution in heterogeneous areas
regarding the relief, which allowed having high climate vari-
abilities (Sparovek et al. 2007). On the other hand, the 2,400
weather stations selected for this study represent well the
altitude strata of the Brazilian territory (Table 1). Finally, it is
important to mention that the weather station of the consisted
database represents an average density of one station for
3,533 km2.

The consisted database was geographically divided ran-
domly into two data sets. The first, referred to as the fitting
set, with 75 % of weather stations, was used in multiple
regression analyses in order to build models of air temper-
ature. Another group, called the test set, with 25 % remain-
ing data, was used to perform the first validation of the
models for monthly and annual air temperature. Similarly,
Calvo and Gregory (1994), Goodale et al. (1998), Ninyerola
et al. (2000), Claps et al. (2008), and Gouvas et al. (2011)
also used a portion of the data for model validation.
Validation is essential for equations that are intended to be
used for extrapolations. Therefore, we performed 39 geo-
graphically weighted random sampling to compose the data
groups for fitting and test sets for maximum, mean, mini-
mum, monthly, and annual air temperature data. Fitting and
test sets are very similar in terms of average and standard
deviation (Fig. 3). Fitting set was used to perform the first
exploratory statistical analysis for obtaining the correlations
between all dependent and independent variables.

Fitting set was used to establish the relationships between
the dependent (maximum, mean, and minimum, monthly, and
annual air temperatures) and independent (altitude, latitude,
longitude, and their combinations) variables (Eq. 1).
Although other studies used several other independent varia-
bles to predict air temperature, we prefer to consider only the
relevant variables that define the macroclimate such as altitude,
latitude, and longitude for both small and large spatial scales
(Oliveira Neto et al. 2002; Rodríguez-Lado et al. 2007; Bardin
et al. 2010).
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Considering that only the linear model is not good
enough to express the relationship between the air temper-
ature and macroclimatic factors in a continental country like
Brazil, we apply to the fitting test data a general multivariate
nonlinear regression model (Eq. 1).

Ti ¼ a0 þ a18þ a2lþ a3hþ a48lþ a58hþ a6lh

þ a78
2 þ a8l

2 þ a9h
2 ð1Þ

where Ti is the maximum, minimum, or mean, monthly
(i01, 2,…, 12) or annual (i013) temperature; 8 is the
latitude in decimal degrees (positive values in the north-
ern hemisphere and negative in the southern hemisphere);
1 is the longitude in decimal degrees (negative values);
h the altitude in meters; and a0 to a9 the coefficients of
the multivariate regression equation.

An important recommendation in the multiple regression
analysis is that the number of observations should be at least
five to ten times greater than the number of independent
variables (Draper and Smith 1981). As we have a total of
1,800 stations, such consideration is not a limitation for our
study. Regression models were developed using the soft-
ware XLSTAT v. 2011 (Addinsoft 2011) with the model
selection by the backward method using multivariate regres-
sion technique, considering a 5 % probability. The motiva-
tion to eliminate variables is based on the residuals and loss
of predictability that are introduced when irrelevant varia-
bles are added to the model. The objective was to reach a
compromise where the final equation satisfies the purpose of
the study (Rawlings et al. 1998). We used the criterion of
highest R2

adj (R
2 adjusted) for the selection of the best

models. Unlike R2, R2
adj does not always increase as

Fig. 1 Flowchart of the air temperature modeling processes: descriptive and multivariate statistical analyses and geostatistical and geoprocessing steps
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variables are added to the model because it removes the
impact of degrees of freedom and gives a quantity that is
more comparable than R2 over models involving different
numbers of parameters (Rawlings et al. 1998). The value of
R2

adj will tend to stabilize around some upper limit as
variables are added, and the simplest model with R2

adj near
this upper limit can be chosen as the “best” model. The
method of multivariate regression was chosen for its sim-
plicity and for being one of the most widely used techniques
for developing empirical models (Lanzante 1996). Except
for Medeiros et al. (2005), it is unusual to employ combined
variables among geographic coordinates and altitude as
independent variables in models to estimate air temperature.
However, this technique was considered to optimize the
precision and accuracy of the results. Analysis of variance
was applied in the unfolded R2

adj values, which allowed
calculating the contribution of each significant independent
variable in the estimation of air temperature.

Fig. 2 Location of the Brazilian weather stations used for air temper-
ature modeling

Table 1 Distribution of weather
stations in the Brazilian territory
according to their altitude

Altitude (m.a.s.l.) Relative area
of altitude (%)

Absolute number
of stations

Relative proportions
of stations (%)

Density of stations
(km2 per station)

<100 21.0 479 20.0 3,729

100–200 20.2 351 14.6 4,912

200–400 28.0 624 26.0 3,826

400–800 23.6 787 32.8 2,520

800–1,200 6.7 149 6.2 3,831

>1,200 0.4 10 0.4 3,776

Total 100 2,400 100 3,533

Fig. 3 Mean monthly maximum, minimum, and mean air temperature
from 2,400 Brazilian weather stations, 1,800 for fitting test and 600 for
test set. Bars represent data variability (±standard deviation) among the
weather stations
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Once a model is specified and its best-fitting parameters
are found, one is in a position to assess the performance of
the model with independent data. Researchers have pro-
posed a number of criteria that were thought to be important
for model evaluation; among them are included qualitative
criteria (explanatory adequacy, interpretability, faithfulness)
and quantitative criteria (falsifiability, goodness of fit, sim-
plicity/complexity, generalizability; Myunget al. 2003).
Besides R2

adj, the following errors and indices were used
to evaluate the air temperature models: root mean square
error (RMSE), mean absolute percentage error (MAPE),
Durbin–Watson statistic (DW), and Mallows’ Cp coeffi-
cient (Cp). RMSE and MAPE were used to estimate the
differences (in degree Celsius and percent, respectively)
between values predicted by models and the values mea-
sured from the consisted database, which allows aggregat-
ing them into a single measure of predictive power. The
Durbin–Watson test was used to detect the presence of
serial correlation in the residuals, which was also evaluat-
ed visually (Bussab 1986). Mallows’ Cp coefficient is an
estimate of the standardized total mean squared error of
estimation for the current set of data. When the model
with p+1 (p′) explanatory variables is correct, the residual
sum of squares is an unbiased estimate of (n−p′)σ2; in
this case, Cp is close to p′ (Rawlings et al. 1998). Usually,
small values of Cp are desirable. When important inde-
pendent variables have been omitted from the model, the
residual sum of squares is an estimate of (n−p′)σ2 plus a
positive quantity reflecting the contribution of the omitted
variables; in this case, Cp is expected to be greater than p′.
Regression models with Cp values close to the top and below
it are candidates for the best model.

The performance of the temperature models was also
evaluated using the performance index “Pi” (Eq. 4).
This new index is an update of the confidence index
“c” (Sentelhas and Camargo 1997), which is the product
of the coefficient of correlation “r” (Pearson’s correla-
tion coefficient) and the agreement index “d” (Willmott
et al. 1985). The performance index, Pi, is the product
of the coefficient of correlation “r” (Eq. 2) and refined
agreement index “dr” (Eq. 3; Willmott et al. 2012),
combining accuracy and precision. Precision is provided
by the coefficient of correlation “r” which indicates the
dispersion degree of data from the mean, i.e., the ran-
dom error. Accuracy is related to the disengagement of
the estimated values from those observed and is esti-
mated by the refined agreement index “dr”. The criteria
for interpreting the performance index, Pi, is: Pi≥0.75,
optimum performance; 0.6≤Pi<0.75, very good perfor-
mance; 0.45≤Pi<0.6, good performance; 0.3≤Pi<0.45,
tolerable performance; 0.15≤Pi<0.3, poor performance;
0≤Pi <0.15, bad performance; and Pi <0, very bad
performance.

r ¼ xi � xð Þ yi � yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xð Þ2

h i
yi � yð Þ2

h ir ð2Þ

dr ¼
1�

P
yi�xij j

c
P

yi�yj j ; when
P

yi � xij j � c
P

yi � yj j
c
P

yi�yj jP
yi�xij j � 1; when

P
yi � xij j > c

P
yi � yj j

8
><
>:

ð3Þ
Pi ¼ r dr ð4Þ
where r is the Pearson’s correlation coefficient, xi is ith
measured value, yi is the ith predicted value, x is the mean
of all measured values, y is the mean of all predicted values,
Pi is the performance index, and dr is the refined agreement
index; c02.

The combination of kriging and multivariate models
has been demonstrated as an effective way for model-
ing air temperature spatially (Goodale et al. 1998;
Rodriguez-Lado et al. 2007; Claps et al. 2008). For
this, the residues from the 1,800 weather stations of
the test fitting database, resulted from the multivariate
regression analyzes, were interpolated using geostatisti-
cal techniques. Normality hypothesis of fitting test
residuals was tested according to the W test at 5 %
(Shapiro and Wilk 1965). Experimental omnidirectional
semivariograms were adjusted by the geostatistic pro-
gram GS+ v.9 considering geometric field of until
50 % range fitting set (latitude and longitude) since
after this value the semivariogram does not seem to
be correct (Guerra 1988). Theoretical models such as
spherical, exponential, Gaussian, and linear were consid-
ered since they usually cover the general dispersion situ-
ation of environmental science spatial events (Burrough
and McDonnell 1998; Soares 2006). Through GS+ v.9
cross-validation, the correlation coefficients of the selected
models were obtained. The spatial dependence index (SDI)
was used according to Alvares et al. (2011), which meas-
ures the structural variance effect on the total variance
(sill) of the sample. SDI comprises the following
interpretation break: weak SDI≤25 %, moderate SDI
between 25 and 75 %; and strong SDI ≥ 75 %.
Through structural parameters obtained from experimen-
tal semivariograms, residue maps were created with the
geographic information system ArcGIS v.10 (ESRI
2010). A punctual ordinary kriging estimator was used
for geostatistic interpolation.

The temperature values of 600 weather stations of the test
set were compared against the estimates done by the multi-
variate equations, and this represents the first validation of
temperature models. First validation has been divided into
two parts, before and after kriging. Thus, the effect of the
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sum of the residue in the quality models and in the final
temperature maps can be observed. For evaluating the per-
formance of the temperature models in a first validation, the
following errors were considered: mean error (ME), mean
absolute error (MAE), RMSE, and MAPE according to the
equations below:

ME ¼ 1

N

X
yi � xið Þ ð5Þ

MAE ¼ 1

N

X
yi � xij j ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
yi � xið Þ2

r
ð7Þ

MAPE ¼ 100

N

X yi � xi
yi

����
���� ð8Þ

where xi is the ith measured value, yi is the ith predicted value,
N is the number of samples considered, x is the mean of all
measured values, and y is the mean of all predicted values.

Using map algebra techniques (Tomlin 1990; Burrough
and McDonnell 1998), the results from the multivariate
regression models for the maximum, minimum, and mean
annual air temperatures were converted into maps using
ArcGIS, processing the independent variables as raster
layers. The altitude layer (in meters) was obtained from the
digital elevation model (DEM) provided by the Shuttle Radar
Topography Mission (SRTM; Farr and Kobrick 2000) in its
current fourth version (Jarvis et al. 2008). Subsequently,
ArcGIS was used to build the DEM for Brazil at 1,000 m
resolution (pixel 1 km2; Fig. 4). Latitude and longitude layers
were obtained in decimal degrees using the central coordinates
of each pixel corresponding to the DEM.Using geoprocessing
techniques (Theobald 2007; Ormsby et al. 2010; Allen 2011),
all temperature models were programmed and run in ArcGIS.

Unlike similar studies, in the present study, the models
were evaluated by comparing them with results from 16
major publications presented in Brazil (Fig. 5), constituting
the second validation of the temperature models. These
papers were published in the last four decades since the
pioneer one in the Rio Grande do Sul State (Ferreira et al.
1971) to the most recent publication for the microregion of
Jundiaí, in São Paulo State, Brazil (Bardin et al. 2010).
Among these, two papers that covered wide areas, covering
more than one state, as presented by Oliveira Neto et al.
(2002) for the “Midwest” region, between latitudes 16° and
24° S and longitudes 48° and 60° W, and by Medeiros et al.
(2005) to the northeast region of Brazil, were also consid-
ered. All equations were programmed in ArcGIS 10 using

the tool “ModelBuilder” (Allen 2011), and DEM was used
for each state and region to obtain altitude layers, as men-
tioned previously. Comparisons between air temperature
values estimated with the previous models and with the
models proposed in this study were evaluated using the
Pearson’s correlation coefficients of the maps compared
using the tool “Band Collection Statistics” (ESRI 2010).

Finally, using the tool “Zonal statistics as table” (Theobald
2007), the descriptive statistics of the maximum, minimum,
and mean air temperature were calculated for monthly and
annual timescales for Brazilian state capitals using the official
digital network (IBGE 2007).

3 Results and discussion

Exploratory data analysis showed that the maximum, min-
imum, and mean air temperatures showed strong relation-
ships with geographic coordinates and altitude (Fig. 6).
The correlations between air temperature and geographical
coordinates and altitude were well defined, as observed by
Pereira et al. (2002): higher latitude, lower temperature
because of the seasonal variation of incoming solar radia-
tion; higher altitude, lower temperature due to atmospheric
pressure reduction and air rarefaction of the air. Longitude
showed less effect on temperature variation since its effect
on air temperature amplitude is associated with the posi-
tion of the area in relation to the ocean, which varies with
the regions of the country. About this, Driscoll and Yee
Fong (1992) stated that longitude or continentality effect is

Fig. 4 Digital elevation model of Brazil. Mosaic composed by SRTM
tiles
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a variable very difficult to model since in some cases this
effect can be related to the latitude when the ocean is
north or south of the region considered.

Compared with the minimum and mean temperature, the
maximum temperature showed the lowest correlations with
altitude, longitude, and latitude (Fig. 6). During winter (July
and August) and spring (September and October), the cor-
relation between maximum temperature with altitude and
longitude were the lowest (r<0.25). The correlation be-
tween maximum temperature and latitude was above 0.5 in
all months, but still smaller than the values obtained for the
minimum and mean temperatures. This is likely because in
most parts of Brazil, the maximum temperatures are influ-
enced by other variables besides latitude, longitude, and
altitude, such as rainfall patterns and cold front influence.
In Brazil, cold fronts are seasonal and occur more frequently
from May to September, with approximately 45 crossings
per year in the south and southeast regions and up to 10
crossings in the lower latitudes, until 15° S (Cavalcanti and
Kousky 2009). During wintertime, cold air incursions have
a profound impact upon the grass temperature and extreme
episodes can produce freezing conditions in southern and
southeastern Brazil (Garreaud 2000). During the warm sea-
son, these episodes produce less dramatic variations of
temperature. The coastal region of northeastern Brazil,
which receives maximum rainfall from May to July, nor-
mally experiences an increase in rainfall associated with the
cold fronts (Kousky 1979), and in this season, there is high
temperature variability. Additionally, Andrade (2005) noted
that years with greater rainfall totals corresponded to those
with a greater number of cold front crossings. The high air
relative humidity in the rainy season causes less temperature
fluctuations during the day, with the maximum temperature
remaining mild. In most regions of the country, the dry
season, which usually coincides with the winter and spring,
has temperatures that vary more over the day, reaching quite
high values in several days, increasing the average, and
reducing the concordance in relation to the time of year
and location when modeled. Furthermore, Barros et al.
(2002) showed that in southern Brazil, the interannual var-
iability of temperature is higher in colder months, with a
standard deviation of approximately 2 °C. Minimum tem-
peratures showed better correlations than maximum temper-
atures, with r greater than 0.6 for latitude and less than −0.7
for altitude in all months. It was also observed that for most
of the year, except for March, latitude explains at least 50 %
(r>0.71, R200.5) of the variability of the maximum, mini-
mum, and mean air temperatures in both monthly and an-
nual timescales (Fig. 6). The same relationship was found
between altitude and the mean annual temperature for the
state of São Paulo by Rodríguez-Lado et al. (2007).

The square of altitude (h2) was not significant at 5 % and
thus did not contribute to predicting the maximum, minimum,
and mean temperatures both in monthly and annual timescales
(Table 2). Similar results were obtained by Ranhao et al.
(2008) since the inclusion of squared altitude in the models

Fig. 5 Location of all studied areas used in the evaluation of the
equations obtained in this study. RS Rio Grande do Sul (Ferreira et
al. 1971; Buriol et al. 1973; Estefanel et al. 1973), SC Santa Catarina
(Buriol et al. 1974; Ferreira et al. 1974), PR Paraná (Pinto and Alfonsi
1974), SP São Paulo (Rodríguez-Lado et al. 2007), JD Jundiaí micro-
region (Bardin et al. 2010), MG Minas Gerais (Sediyama and Melo
Junior 1998), ES Espírito Santo (Pezzopane et al. 2004), MW Midwest
(Oliveira Neto et al. 2002), GO Goiás (Alfonsi et al. 1974), NE
Northeast (Medeiros et al. 2005), BA Bahia (Almeida and Sá 1984),
PI Piauí (Lima and Ribeiro 1998), PA Pará (Ferreira et al. 2006)

Fig. 6 Pearson’s correlation coefficients for the relationships between
maximum, minimum, and mean (monthly and annual) air temperatures
and altitude, longitude, and latitude
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was not significant in both annual and seasonal timescales.
However, in northeastern Brazil, this variable was important
for determining the maximum and mean temperatures during
the summer months (Medeiros et al. 2005). In the microregion
of Jundiaí, in the state of São Paulo, Bardin et al. (2010)
concluded that latitude and longitude were not significant
due to the reduced dimension of the studied area. In the state
of Espirito Santo, Brazil, longitude was not significant in the
estimation of air temperature since the entire state territory is
very close to the Atlantic Ocean (Pezzopane et al. 2004). On
the other hand, Buriol et al. (1974) showed that the maximum
temperature variation in Santa Catarina State, Brazil, had a
greater influence of longitude and altitude than latitude.

All regressionmodels were significant (α≤0.01), as well as
all independent variables, at 1 and 5 %. The monthly and
annual temperature models presented adjusted determination
coefficients between 0.51 and 0.96 (Table 2). The better fitting
equations were obtained for the mean (R2adj00.87–0.96) and
minimum (R2

adj00.84–0.94) temperatures. However, the
equations for maximum temperature showed adjusted deter-
mination coefficients between 0.51 and 0.81, which are still
good enough for temperature estimates considering that they
presented statistical significance. Therefore, models of maxi-
mum temperature presented the worst indices, with RMSE
above 1 °C and MAPE higher than 2.5 %, reaching 4.8 % for
August. These results are expected since the maximum values
are more difficult to predict due to the fact that they are
influenced by factors other than latitude, longitude, and alti-
tude, mainly during the rainy season in low latitudes, as
previously discussed. Zheng and Basher (1996) have also
found that their regression equations give slightly worse
results when used to estimate the mean summer maximum
temperature. Similar results were obtained by Boi et al. (2011)
in the summer months. Minimum temperature was accurately
estimated (R2

adj>0.9) between the fall and winter, in the
months from March to July. In the case of mean temperature,
the R2

adj was lower than 0.9 in the warmer months: December,
January, and February.

To check the quality of the temperature estimates, the
DW test for residue estimation was conducted. The DW test
showed that for most of the models (21 equations), the
residues are not autocorrelated, i.e., DW values are close
to 2 (Table 2). For two other equations (mean temperature
for October and annual minimum temperature), the autocor-
relation was identified as inconclusive, i.e., DW test points
to an indecision zone and cannot rule out an autocorrelation.
Other models presented a slight autocorrelation and thus
showed DW below the critical value for the significance
level of 5 %. However, analyzing the residue plots, there is
no clear trend of autocorrelation (Bussab 1986). Thus, it
demonstrates that the models proposed are of good quality
and able to predict most of the spatial variability of air
temperature in the Brazilian territory.

Mallows’ Cp coefficient showed that the models were well
selected since they presented Cp values very close to p′
(Table 2). The new index for evaluating the models’ quality,
named performance index (Pi), showed that most equations
had optimum or very good performance, presenting high
accuracy and precision on estimating the air temperature for
Brazil. RMSE and MAPE were generally higher in the winter
months (June to September), which may indicate that the
models have higher difficulty of capturing the spatial variabil-
ity of air temperature this time of year, which is probably
related to the sporadic incursions of cold air masses in the
Brazilian territory.

Altitude was the most important independent variable to
estimate the average and minimum temperature. It was
present in most models, representing more than 45 % of
the temperature variability in the models in which it was
significant (Fig. 7), mainly in the summer months. As ob-
served in the general analysis, altitude also showed lower
contribution in the estimates of the mean and maximum
temperatures in the coldest months of the year, between
June and September. Latitude was also important in the
mean and maximum temperature models. It had a tendency
to have greater contribution during the coldest months.
Considering all the months when this variable was signifi-
cant, it had an overall contribution of 40 %. In the case of
minimum temperature, latitude had a large contribution
(>65 %) in April and May. Finally, longitude was the inde-
pendent variable which was present in the majority of the
models, but with weight contribution not exceeding 12 %. It
was more important in the winter months to estimate the
mean and maximum temperature (Fig. 7).

The combined variables were important in different
periods of the year and contributed differently in the
estimation of the maximum, mean, and minimum temper-
atures. The variable “altitude×latitude” (h8) had moderate
contribution to the models, with more expression to the
minimum temperature in May, explaining 16 % of Tmin

variability. For the other models, it explained no more
than 5 % of temperature variability. The combination of
“altitude×longitude” (h1) was significant in the majority
of the models; however, in the models of maximum and
mean temperatures, their contribution was limited to no
more than 8 %. On the other hand, their greatest effect
occurred in January, April, and December, explaining
respectively 51, 25, and 31 % of the variability. In north-
eastern Brazil, the combined variable h1 was not signifi-
cant (α00.05) for any model of air temperature (Medeiros
et al. 2005). The variable “latitude×longitude” (81) con-
tributed 22 % to estimate the maximum temperature in
April. Estimates of the mean temperature in July, August,
September, and October were explained by 81 in at least
25 %. This combined variable was responsible for
explaining 23 % of the annual mean temperature.
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The quadratic interaction of latitude (φ2) contributed in
all models of maximum and mean temperature, being more

important in March and April to the maximum temperature,
explaining more than 25 % of its variability. Approximately

Fig. 7 Monthly distribution
breakdown of the sum of
squares for the contribution of
significant independent
variables (in percent) for the air
temperature models

418 C.A. Alvares et al.



35 % of the estimated minimum temperature for October
was explained by 82. Finally, the quadratic interaction of
longitude (12) was significant for all temperature models,
except for maximum temperature in February and for min-
imum temperature in July. This independent variable
showed the highest contribution to maximum temperature
estimates, between 12 and 18 %, during the months from
June to October (Fig. 7).

The annual maximum, minimum, and mean temperature
maps for Brazil presented, as expected, a high range of vari-
ation (Fig. 8). The annual maximum temperature expressed
extreme values between 11.4 and 34.7 °C. Much of central,
northern, and northeastern Brazil presented annual maximum
temperatures above 32 °C. The annual minimum temperature
map showed that the classes were distributed in parallel to
latitude and with remarkable influence of the relief (Figs. 4, 6,
7, and 8). The minimum annual temperature extremes were
between 3.7 and 23.5 °C. The mean annual temperature had
greater influence by longitude and altitude, with extremes of
temperature between 8.4 and 28.2 °C.

In order to improve the results of the regression models,
we adopted ordinary kriging to obtain a residue surface.
Among the theoretical models tested (spherical, exponential,
Gaussian, and linear), the spherical model was the best one
to describe the experimental semivariograms (Table 3),
according to the method used by the program geostatistic
GS+ v.9, which is based on the smallest reduced sums of
squares (RSS) and on the greatest determination coefficient
(R2; Robertson 2008). All spherical models presented R2

higher than 0.9. Rodríguez-Lado et al. (2007) also found
that spherical was the best model fitted to temperature
residue equations for the state of São Paulo. We observed
that the nugget effect was greater at residues of mean
and maximum temperature. This means that there are
components of variability in the regression models and
that the semivariograms were not able to detect them.
Semivariograms stabilize at approximately 5°, but values
were observed between 2.95 and 8.53, with higher ranges
in the winter months (June, July, and August). SDI indicated
that temperature residue presented moderate to strong spa-
tial dependence, showing that there are patterns of spatial
distribution for all models (Fig. 8). In Midwest and northern
Brazil, in the states of Mato Grosso, Pará, and Amazonas,
the highest negative residues (less than −3 °C) were ob-
served for the maximum, mean, and minimum temperatures.
The largest positive residues in the maps were found in
southeastern Brazil and far north to the maximum tempera-
ture and in the Midwest region (states of Goiás and Mato
Grosso do Sul) to the mean temperature. The residues ob-
served in the maps ranged from −3 to 3 °C, which is very
similar to what was found by Rodríguez-Lado et al. (2007)
in São Paulo state, Brazil. These residuals express the local
temperature variation that was not adjusted by the regression

models. Based on that, they were used to improve the
accuracy of the temperature maps by adding the residue
maps to the modeled temperature maps, obtaining corrected
temperature maps (Fig. 8).

All the air temperature models (Table 2) were applied
twice in the 600 weather stations from the test set to accom-
plish the first validation (Table 4). At the first round of tests,
only the geographical coordinates and altitude of the weath-
er stations were considered from the test set and then the
results were compared with those observed in these same
localities. This part, called “before kriging,” showed MAE
ranging from 0.4 to 1.4 °C, RMSE from 0.6 to 1.8 °C, and
MAPE from 2.1 to 4.8 % (Table 4). The largest deviations
were found in the winter months, mainly for maximum
temperature, with MAE always >1 °C, RMSE>1.5 °C,
and MAPE>4 %. In the second round of tests, the models
were used to estimate temperatures for the 600 weather
stations from the test set and then the values extracted from
the residue kriging maps were added to them. When con-
sidering this procedure, named “after kriging,” the estimated
temperature values became very similar to the observed
data, as demonstrated by ME, MAE, RMSE, and MAPE
(Table 4). The overall ME was 0, the maximum MAE was
lower than 0.4 °C, RMSE was no greater than 0.8 °C, and
MAPE was lower than 2.8 %. Such results show that resi-
dues are random errors and that our regression model
worked quite well for interpreting the spatial variability of
air temperature throughout the Brazilian territory.

The final map of the annual maximum temperature (map
regression+kriging map of residue) shows that a large por-
tion of Brazil, above the Tropic of Capricorn, has an annual
Tmax greater than 29 °C, with the exception of the areas with
altitude above 700 m. Below the tropic line, the annual
minimum temperature is <14 °C, and in higher areas (up
to 800 m) of the mountainous regions in the states of Paraná
and Santa Catarina, this value is no more than 11 °C (Fig. 8).
The peak of Bandeiras, on the border between the states of
Minas Gerais and Espirito Santo, southeastern Brazil, is the
coldest Brazilian area with a mean annual temperature
below 8 °C. The peaks of Pedra da Mina and Agulhas
Negras, both with altitude around 2,800 m, in Mantiqueira
Mountains, near the triple border of the states of Minas
Gerais, São Paulo, and Rio de Janeiro, are also very cold
localities with mean annual temperatures between 8 and
11 °C (Fig. 8). The Serrano Plateau (Santa Catarina state),
southern Brazil, with an altitude ranging from 1,200 to
1,800 m, is also one of the coldest regions of Brazil having
a mean annual temperature between 11 and 14 °C. Within
this same temperature class, we found a small area in the far
north of the Rio Grande do Sul state, a plateau with altitudes
between 1,000 and 1,200 m. A large part of Midwest and
northeastern Brazil has a mean annual temperature between
23 and 26 °C. Some exceptions are found in the highlands and
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Fig. 8 Annual maximum, minimum, and mean air temperature maps for Brazil, generated by the regression models, their residues interpolated by
kriging, and the final maps of air temperature
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plateaus of the states of Mato Grosso, Goias, and Bahia. A
mean annual temperature above 26 °C was mapped in wide

valleys of the Amazon, Tocantins, Araguaia, and Parnaíba
Rivers. The extreme north of the Brazilian Northeast

Table 3 Models, parameters, and quality of experimental semivariograms adjusted for fitting set residue

Month Temp Model Coa Co+Cb Aoc C/(Co+C) SDI R2d RSS re

January Max Esf. 0.130 2.174 4.630 94.0 Strong 0.96 1.41×10−1 0.88

Min Esf. 0.050 0.368 4.710 86.4 Strong 0.96 4.07×10−3 0.73

Mean Esf. 0.181 0.647 3.940 72.0 Moderate 0.99 1.96×10−3 0.76

February Max Esf. 0.164 2.532 4.330 93.5 Strong 0.96 2.27×10−1 0.89

Min Esf. 0.039 0.248 5.120 84.3 Strong 0.98 8.52×10−4 0.73

Mean Esf. 0.170 0.556 4.580 69.4 Moderate 0.99 1.02×10−3 0.76

March Max Esf. 0.202 1.627 4.430 87.6 Strong 0.95 8.72×10−2 0.85

Min Esf. 0.070 0.265 4.070 73.7 Moderate 0.94 2.03×10−3 0.61

Mean Esf. 0.152 0.489 4.600 68.9 Moderate 0.95 4.12×10−3 0.73

April Max Esf. 0.238 1.588 5.020 85.0 Strong 0.97 5.55×10−2 0.85

Min Esf. 0.031 0.450 4.910 93.1 Strong 0.98 4.08×10−3 0.69

Mean Esf. 0.164 0.479 5.190 65.7 Moderate 0.93 5.78×10−3 0.73

May Max Esf. 0.270 1.857 6.190 85.5 Strong 0.99 1.26×10−2 0.86

Min Esf. 0.070 0.265 4.070 73.7 Moderate 0.94 2.03×10−3 0.61

Mean Esf. 0.182 0.754 6.570 75.9 Strong 0.98 7.33×10−3 0.75

June Max Esf. 0.256 2.197 6.030 88.3 Strong 0.99 3.09×10−2 0.89

Min Esf. 0.048 0.515 7.450 90.7 Strong 0.99 7.44×10−4 0.64

Mean Esf. 0.200 0.786 6.050 74.6 Moderate 0.97 1.06×10−2 0.82

July Max Esf. 0.150 2.472 5.990 93.9 Strong 0.99 4.55×10−2 0.89

Min Esf. 0.078 0.829 8.180 90.6 Strong 0.99 7.03×10−4 0.63

Mean Esf. 0.153 1.018 5.010 85.0 Strong 0.94 3.57×10−2 0.80

August Max Esf. 0.089 3.134 5.620 97.2 Strong 0.99 7.52×10−2 0.92

Min Esf. 0.109 0.854 8.530 87.2 Strong 0.99 8.11×10−4 0.58

Mean Esf. 0.164 1.299 5.260 87.4 Strong 0.99 1.57×10−2 0.84

September Max Esf. 0.148 2.883 5.630 94.9 Strong 0.99 2.31×10−2 0.91

Min Esf. 0.173 0.722 6.540 76.0 Strong 0.99 1.63×10−3 0.66

Mean Esf. 0.285 1.395 5.740 79.6 Strong 0.99 9.25×10−3 0.86

October Max Esf. 0.267 2.720 5.620 90.2 Strong 0.99 1.38×10−2 0.90

Min Esf. 0.135 0.555 7.670 75.7 Strong 0.99 1.67×10−3 0.58

Mean Esf. 0.280 1.152 5.590 75.7 Strong 0.94 5.40×10−2 0.85

November Max Esf. 0.119 2.856 4.840 95.8 Strong 0.99 7.72×10−2 0.89

Min Esf. 0.055 0.574 4.810 90.4 Strong 0.92 2.17×10−2 0.70

Mean Esf. 0.163 0.792 3.240 79.4 Strong 0.95 1.06×10−2 0.82

December Max Esf. 0.131 2.499 4.320 94.8 Strong 0.96 2.07×10−1 0.89

Min Esf. 0.057 0.440 4.360 87.0 Strong 0.91 1.29×10−2 0.71

Mean Esf. 0.139 0.668 2.950 79.2 Strong 0.95 6.26×10−3 0.82

Year Max Esf. 0.172 1.701 4.900 89.9 Strong 0.99 3.01×10−2 0.87

Min Esf. 0.037 0.282 4.920 86.8 Strong 0.97 2.05×10−3 0.67

Mean Esf. 0.200 0.653 4.740 69.4 Moderate 0.98 2.34×10−3 0.79

Sph spherical, SDI spatial dependence index, RSS residue sum of squares
a Co0nugget
b Co+C0sill (C structural variance)
c Ao0range (degrees)
dR2 0model adjustment determination coefficient
e r0crossed validation correlation coefficient
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(latitude<9°), in the states of Maranhão, Piauí, Ceará, and
Rio Grande do Norte, also presents a mean annual temper-
ature greater than 26 °C, where there are altitudes no greater
than 300 m.

After the first round of tests, 372 spatial correlations,
evaluating a total of 3.67×108pixels (1 km2), were per-
formed between the results provided by the proposed mod-
els and other studies (Table 5), which resulted in the second

Table 4 Errors of the temperature multivariate regression models using database from fitting and test sets considering kriging effects for the first
validation

Before kriging After kriging

ME (°C) MAE (°C) RMSE (°C) MAPE (%) ME (°C) MAE (°C) RMSE (°C) MAPE (%)

January Max −0.03 1.1 1.3 3.4 −0.04 0.3 0.6 1.1

Min −0.03 0.4 0.6 2.3 −0.02 0.2 0.4 1.1

Mean 0.04 0.6 0.8 2.4 0.01 0.3 0.4 1.2

February Max 0.04 1.1 1.4 3.5 0.01 0.4 0.6 1.2

Min −0.02 0.4 0.6 2.2 −0.01 0.2 0.5 1.2

Mean 0.01 0.6 0.7 2.2 0.05 0.3 0.5 1.2

March Max 0.01 0.9 1.2 2.9 ≤ 0.01 0.4 0.6 1.2

Min 0.02 0.4 0.6 2.1 0.02 0.3 0.5 1.4

Mean 0.0a 0.5 0.7 2.1 0.03 0.3 0.5 1.4

April Max −0.02 0.8 1.1 2.8 ≤0.01 0.3 0.6 1.2

Min −0.03 0.5 0.8 3.0 −0.01 0.3 0.6 1.6

Mean −0.02 0.6 0.7 2.4 −0.03 0.3 0.6 1.5

May Max 0.04 1.0 1.3 3.7 −0.01 0.3 0.6 1.3

Min 0.04 0.7 0.9 4.0 0.03 0.3 0.5 1.7

Mean 0.02 0.6 0.8 2.9 0.03 0.3 0.5 1.5

June Max 0.03 1.2 1.4 4.2 0.11 0.3 0.5 1.2

Min −0.09 0.5 0.7 3.1 −0.02 0.2 0.5 1.6

Mean −0.05 0.7 0.9 3.6 0.04 0.3 0.7 1.9

July Max 0.06 1.2 1.5 4.3 0.06 0.4 0.7 1.5

Min −0.07 0.6 1.1 4.9 −0.06 0.3 0.8 2.8

Mean −0.12 0.7 1.0 3.8 −0.05 0.3 0.5 1.8

August Max −0.15 1.4 1.7 4.9 0.05 0.4 0.7 1.3

Min −0.01 0.6 1.1 4.0 0.03 0.3 0.8 2.3

Mean −0.07 0.9 1.1 4.5 −0.03 0.4 0.6 2.0

September Max −0.14 1.4 1.8 4.8 −0.04 0.4 0.8 1.5

Min 0.02 0.7 1.1 4.3 0.05 0.4 0.8 2.4

Mean 0.02 0.9 1.1 3.9 −0.02 0.4 0.5 1.7

October Max −0.11 1.3 1.6 4.2 −0.03 0.4 0.7 1.3

Min −0.05 0.6 0.8 3.3 −0.03 0.3 0.6 1.8

Mean −0.1 0.9 1.1 3.8 ≤0.01 0.4 0.6 1.6

November Max −0.09 1.2 1.6 3.9 −0.03 0.4 0.8 1.3

Min 0.03 0.5 0.8 2.8 0.04 0.3 0.6 1.5

Mean −0.12 0.8 1.0 3.2 −0.05 0.4 0.6 1.6

December Max −0.16 1.0 1.3 3.3 −0.03 0.4 0.7 1.3

Min 0.03 0.5 0.7 2.6 0.03 0.3 0.5 1.5

Mean −0.05 0.7 0.9 2.8 −0.01 0.3 0.6 1.4

Year Max 0.06 0.9 1.2 3.1 ≤0.01 0.3 0.5 1.1

Min 0.01 0.4 0.7 2.4 ≤0.01 0.2 0.5 1.3

Mean −0.01 0.6 0.8 2.8 −0.01 0.3 0.5 1.5

ME mean error, MAE mean absolute error, RMSE root mean square error, MAPE mean absolute percentage error
a Less than 0.01
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validation of the models. The overall correlation obtained
was 0.93, which considered all the states and regions and all
months and years. The correlations between the annual

temperatures from the proposed models and those obtained
with the other regional models have reached the highest
global precision, equal to 0.95. A high overall correlation

Table 5 Pearson’s correlation coefficient for the relationship between temperatures estimated by the models proposed and those published for
some Brazilians regions and states, considering aspatial resolution of 1 km2, for the second validation

Month Temperature RS SC PR SP FC MG ES MW GO NE BA PI PA
Pearson’s correlation coefficient (r)

January Maximum 0.91 0.89 0.99 – 0.99 0.92 0.97 0.92 – 0.83 – 0.88 –

Minimum 0.90 – 0.97 – 0.99 0.97 0.99 0.96 – 0.99 – 0.99 –

Mean 0.97 0.99 0.99 0.99 – 0.99 0.99 0.92 0.99 0.89 0.88 0.88 0.74

February Maximum 0.88 0.95 0.98 – 0.99 0.93 0.99 0.99 – 0.66 – 0.91 –

Minimum 0.95 – 0.97 – 0.99 0.98 0.99 0.98 – 0.98 – 0.99 –

Mean 0.99 0.99 0.99 0.99 – 0.99 0.99 0.92 0.99 0.95 0.91 0.93 0.63

March Maximum 0.96 0.92 0.99 – 0.99 0.96 0.99 0.91 – 0.78 – 0.92 –

Minimum 0.96 – 0.96 – 0.99 0.96 0.99 0.99 – 0.97 – 0.99 –

Mean 0.99 0.98 0.99 0.99 – 0.99 0.99 0.93 0.99 0.96 0.91 0.88 0.74

April Maximum 0.94 0.94 0.99 – 0.99 0.96 0.99 0.96 – 0.87 – 0.88 –

Minimum 0.98 – 0.95 – 0.99 0.95 0.99 0.93 – 0.98 – 0.91 –

Mean 0.97 0.93 0.98 0.99 – 0.99 0.99 0.98 0.99 0.95 0.87 0.94 0.87

May Maximum 0.95 0.91 0.98 – 0.98 0.96 0.99 0.95 – 0.89 – 0.70 –

Minimum 0.94 – 0.89 – 0.99 0.93 0.99 0.92 – 0.86 – 0.96 –

Mean 0.93 0.93 0.98 0.99 – 0.98 0.99 0.99 0.99 0.97 0.84 0.98 0.81

June Maximum 0.97 0.85 0.98 – 0.98 0.95 0.98 0.92 – 0.88 – 0.77 –

Minimum 0.82 – 0.85 – 0.99 0.96 0.99 0.92 – 0.99 – 0.99 –

Mean 0.97 0.93 0.97 0.99 – 0.99 0.99 0.99 0.98 0.96 0.78 0.92 0.71

July Maximum 0.94 0.78 0.96 – 0.96 0.91 0.97 0.97 – 0.90 – 0.81 –

Minimum 0.81 – 0.87 – 0.99 0.96 0.99 0.93 – 0.99 – 0.99 –

Mean 0.97 0.89 0.96 0.99 – 0.99 0.99 0.99 0.99 0.99 0.73 0.92 0.81

August Maximum 0.92 0.77 0.95 – 0.95 0.91 0.94 0.87 – 0.88 – 0.80 –

Minimum 0.80 – 0.88 – 0.99 0.96 0.99 0.94 – 0.98 – 0.84 –

Mean 0.97 0.86 0.97 0.99 – 0.99 0.99 0.94 0.98 0.73 0.65 0.81 0.80

September Maximum 0.90 0.82 0.94 – 0.94 0.93 0.92 0.94 – 0.85 – 0.65 –

Minimum 0.88 – 0.92 – 0.99 0.98 0.99 0.97 – 0.95 – 0.78 –

Mean 0.97 0.89 0.98 0.98 – 0.99 0.99 0.98 0.99 0.91 0.61 0.74 0.78

October Maximum 0.91 0.88 0.97 – 0.97 0.93 0.95 0.84 – 0.84 – 0.64 –

Minimum 0.95 – 0.98 – 0.99 0.99 0.99 0.97 – 0.93 – 0.83 –

Mean 0.95 0.92 0.99 0.98 – 0.92 0.99 0.98 0.98 0.91 0.79 0.70 0.37

November Maximum 0.84 0.88 0.97 – 0.99 0.87 0.87 0.88 – 0.84 – 0.84 –

Minimum 0.90 – 0.97 – 0.99 0.98 0.99 0.95 – 0.96 – 0.82 –

Mean 0.97 0.96 0.98 0.98 – 0.99 0.99 0.88 0.97 0.88 0.86 0.72 0.40

December Maximum 0.90 0.87 0.96 – 0.99 0.92 0.94 0.87 – 0.82 – 0.92 –

Minimum 0.94 – 0.99 – 0.99 0.96 0.99 0.97 – 0.96 – 0.87 –

Mean 0.96 0.99 0.99 0.98 – 0.99 0.99 0.96 0.98 0.85 0.79 0.82 0.52

Year Maximum 0.92 0.93 0.98 0.88 0.98 0.93 – 0.95 – 0.83 – – –

Minimum 0.91 – 0.95 0.97 0.99 0.97 – 0.95 – 0.99 – – –

Mean 0.99 0.96 0.99 0.99 – 0.99 – 0.98 0.99 0.93 0.80 – –

RS (Tmax: Buriol et al. 1973; Tmin: Estefanel et al. 1973; Tmed: Ferreira et al. 1971); SC (Tmax: Buriol et al. 1974; Tmed: Ferreira et al. 1974); PR
(Pinto and Alfonsi 1974); SP (Rodríguez-Lado et al. 2007); FC (Bardin et al. 2010); MG (Sediyama and Melo Junior 1998); ES (Pezzopane et al.
2004); MW (Oliveira Neto et al. 2002); GO (Alfonsi et al. 1974); NE (Medeiros et al. 2005); BA (Almeida and Sá 1984); PI (Lima and Ribeiro
1998); and PA (Ferreira et al. 2006)

Modeling monthly mean air temperature for Brazil 423



was also obtained in January, February, and April, whereas
in August, September, October, and November, the lowest
correlations were found, equal to 0.90.

Brazilian southern states showed total correlation coeffi-
cients of 0.93 (RS), 0.91 (SC), and 0.96 (PR). The coefficients
of correlation for minimum temperature in the states of RS and
PR and maximum temperature in SC presented lower values
during the coldest months of the year (Table 5). The same was
observed in the original studies for these states (Estefanel et al.
1973; Buriol et al. 1974; Pinto and Alfonsi 1974).

In the Brazilian southeastern states, the total correlation
coefficients were higher than 0.96. Similar results were
obtained in São Paulo state (Rodríguez-Lado et al. 2007), in
Espírito Santo state (Pezzopane et al. 2004), and in the micro-
region of Jundiaí, in São Paulo state (Bardin et al. 2010), with
Pearson’s coefficients of 0.92, 0.86, and 0.85, respectively. In
Minas Gerais state, the correlations for minimum temperature

were smaller than those for the mean and maximum temper-
atures (Sediyama and Melo Junior 1998), which was also
observed by Coelho et al. (1973) in the same state.
Regarding Midwestern Brazil, the equations showed high
correlation with the studies performed in the region by
Oliveira Neto et al. (2002) and Alfonsi et al. (1974).

Considering the whole northeast region, the equations
expressed good correlations with the results reported by
Medeiros et al. (2005), showing an overall coefficient of
correlation of 0.9, although the majority of the models pro-
posed for the entire country of Brazil had better performance.
The correlations between the equations for monthly minimum
and mean temperatures were higher than the maximum tem-
perature. Medeiros et al. (2005) reported that the correlation
coefficients for maximum temperature were the lowest, which
is related to the high maximum temperature variability in this
region. The correlations for the southeast of Bahia were lower,

Table 6 Descriptive statistics of the monthly and annual maximum, minimum, and mean air temperatures in the Brazilian capitals, considering a
resolution of 1 km2

Capital Area (km2) Maximum temperature (°C) Minimum temperature (°C) Mean temperature (°C)

Mn Mx Me SD Mn Mx Me SD Mn Mx Me SD

Aracajú (SE) 174 29.3 29.6 29.4 0.1 20.4 20.7 20.6 0.0 25.0 25.3 25.3 0.0

Belém (PA) 1,065 31.2 31.6 31.4 0.1 22.8 23.3 23.1 0.1 25.7 25.9 25.9 0.1

Belo Horizonte (MG) 330 24.4 27.2 26.5 0.6 11.6 15.8 14.7 0.8 15.7 20.2 19.0 0.9

Boa Vista (RR) 5,687 29.8 32.1 31.4 0.3 20.5 22.5 22.3 0.1 24.0 25.5 25.1 0.1

Brasília (DF) 5,802 26.4 28.9 27.5 0.5 14.2 17.9 15.8 0.6 19.2 22.4 20.8 0.6

Campo Grande (MS) 8,096 27.8 30.2 29.1 0.4 16.3 19.0 17.4 0.4 22.1 24.4 23.0 0.3

Cuiabá (MT) 3,538 28.0 31.6 31.0 0.7 14.3 19.2 18.0 1.0 20.9 24.1 23.5 0.6

Curitiba (PR) 435 22.0 22.6 22.3 0.1 11.5 12.2 11.9 0.1 16.7 17.2 16.9 0.1

Florianópolis (SC) 433 21.8 24.1 23.6 0.4 14.3 16.8 16.4 0.5 17.9 20.2 19.9 0.4

Fortaleza (CE) 313 32.7 32.9 32.8 0.0 22.1 22.4 22.3 0.0 26.0 26.4 26.2 0.1

Goiânia (GO) 739 28.5 29.9 29.5 0.2 16.4 18.0 17.4 0.3 21.3 22.8 22.3 0.3

João Pessoa (PB) 211 30.1 30.3 30.2 0.0 20.8 21.2 21.0 0.1 25.2 25.7 25.5 0.1

Macapá (AM) 6,407 30.4 31.0 30.8 0.1 22.1 23.4 23.0 0.2 25.9 26.5 26.3 0.1

Maceió (AL) 511 29.9 30.4 30.1 0.1 19.3 20.5 20.2 0.2 23.5 25.1 24.6 0.2

Manaus (AM) 11,401 30.5 31.8 31.2 0.3 22.4 23.8 23.1 0.3 26.0 26.9 26.5 0.2

Natal (RN) 170 30.5 30.8 30.7 0.1 21.4 21.8 21.6 0.1 25.4 25.9 25.6 0.1

Palmas (TO) 2,219 30.6 32.9 31.9 0.7 18.0 21.1 19.7 1.0 23.4 26.2 25.1 0.9

Porto Alegre (RS) 497 23.6 25.0 24.6 0.3 13.5 15.3 14.8 0.3 17.8 19.2 18.8 0.3

Porto Velho (RO) 34,082 29.4 31.8 31.2 0.3 18.3 21.2 20.2 0.5 24.9 26.2 25.8 0.2

Recife (PE) 217 30.0 30.2 30.1 0.1 20.4 20.9 20.7 0.1 24.9 25.8 25.5 0.2

Rio Branco (AC) 9,223 30.0 31.6 31.0 0.3 17.1 18.9 18.1 0.4 24.2 25.7 25.1 0.3

Rio de Janeiro (RJ) 1,182 24.7 28.4 27.7 0.6 14.7 19.9 18.9 0.7 18.1 23.0 22.4 0.8

Salvador (BA) 707 28.2 28.9 28.6 0.2 20.1 20.6 20.5 0.2 24.2 24.9 24.7 0.1

São Luís (MA) 827 30.6 31.1 30.9 0.1 22.8 23.2 23.0 0.1 26.4 26.8 26.6 0.1

São Paulo (SP) 1,523 22.6 25.8 23.9 0.5 10.9 17.1 13.0 0.3 16.4 21.6 18.0 0.4

Teresina (PI) 1,756 33.0 33.6 33.4 0.1 20.8 21.9 21.5 0.2 26.2 27.3 27.0 0.2

Vitória (ES) 93 28.0 28.7 28.6 0.1 18.3 19.3 19.2 0.2 22.4 23.6 23.5 0.2

Mn minimum, Mx maximum, Me mean, SD standard deviation
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especially in the winter months, a period when the adjust-
ments obtained by Almeida and Sá (1984) were very low (r<
0.7). Also, in northeastern Brazil, in the state of Piauí, the
correlations with the equations of Lima and Ribeiro (1998)
were reasonable, with an overall correlation coefficient equal
to 0.86. The majority of the temperature models presented by
these authors were of low precision, mainly for minimum and
maximum temperature.

In northern Brazil, the correlations were lower, with overall
precision (r) equal to 0.68 in the state of Pará. This result was
compromised because the equations published by Ferreira et
al. (2006) presented poor quality for every month. Thus, the
equations presented in the present paper are of higher preci-
sion and accuracy than those obtained by these authors.

Considering the application of these models to estimate the
temperatures for the Brazilian capitals, the results are very
coherent (Table 6). In Teresina (5°05′ S, 42°48′W, 88 m), the
capital of Piauí state, the annual temperatures were the high-
est, with a maximum of 33.4 °C, minimum of 21.5 °C, and
mean of 27.0 °C considering the 1,756 pixels (1,756 km2) of
the municipality perimeter (Table 6). At the other extreme, the
coldest capital was Curitiba (25°26′ S, 49°16′ W, 920 m),
Paraná state, where annual temperatures were 22.3, 11.9,
and 16.9 °C, respectively, for the maximum, minimum, and
mean air temperatures. Belo Horizonte, Minas Gerais state
(19°55′ S, 43°56′W, 860 m); Cuiabá, Mato Grosso state (15°
36′ S, 56°06′ W, 180 m); Palmas, Tocantins state (10°10′ S,
48°20′ W, 250 m); and Rio de Janeiro, Rio de Janeiro state
(22°54′ S, 43°12′ W, 10 m) had the greatest temperature
spatial variability in their perimeters, with a standard deviation
ranging from 0.6 to 1.0 °C, due to their vast territorial size or
due to their irregular relief.

As agricultural businesses are responsible for a great part
of the Brazilian gross domestic product (Brugnaro and
Bacha 2009), we expect that the models generated in this
study will become very useful for agricultural and livestock
planning through their application in tools like crop zoning,
animal comfort index mapping, determination of the best
sowing dates, evapotranspiration estimates and irrigation
planning, crop yield models, pest and disease risk zoning,
and agricultural credit and insurance. On the other hand, we
encourage state and federal governments in Brazil to invest
in improvements and upgrades of the Brazilian Weather
Stations Network, leading to an appropriate station density
to provide high-quality data, especially in the less developed
regions of the country.

4 Conclusions

Spatial and temporal variabilities of the monthly and annual
temperatures in Brazil were properly modeled through the
relations of latitude, longitude, altitude, and their combinations

using multivariate regression equations, geostatistical analysis,
and GIS. The models proposed in the present study showed, in
general, better performance than the models previously pub-
lished for several Brazilian states and regions. Therefore, the
temperature models proposed in this study are recommended to
accurately estimate air temperature for use in all Brazilian
territories as well as the maps produced based on these models.
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